
David
Tue February 11, 2003 1:09pm
|
7.62mm Cartridge
Description: There are currently five 7.62mm cartridges in service.
M80 NATO 7.62mm ball cartridge: The M80 is the standard 7.62mm ball cartridge. The M80 can be identified by its unpainted (copper) tip.
M276 NATO 7.62mm ball/dim tracer cartridge: Designed to be used with night vision devices, the M276 dim tracer is a reduced visibility alternative to the standard, high visibility M62 tracer. The M276 can be identified by its purple painted tip.
M62 NATO 7.62mm ball/tracer cartridge: The M62 is the tracer variant of the M80. It is, in all respects, identical to the M80. The M62 can be identified by its orange painted tip.
M82 NATO 7.62mm blank firing cartridge: Designed for use with training simulators, the M82 has no projectile and contains a reduced powder charge. The M82 can be identified by its crimped and sealed cartridge opening in place of a projectile.
M118 7.62mm long range special ball cartridge: Designed for use in long range sniper applications where a high degree of accuracy is required, the M118 is essentially a civilian match grade bullet adapted for military use. Externally, the M118 is identical to the M80 7.62mm ball ammunition.
|
|

David
Tue February 11, 2003 1:09pm
|
.50 Caliber Cartridge
Description: There are currently eleven .50 caliber cartridges in service.
M2/M33 .50 Caliber ball cartridge: The M2 is the original standard .50 caliber ball cartridge. The M33 is a redesigned, modern version of the M2, and is identical in all respects. The M2/M33 can be identified by its unpainted (copper) tip.
M1/M10/M17 .50 Caliber tracer cartridge: The M1/M10/M17 are tracer variants of the M2/M33 cartridge. They are essentially identical to one another in terms of ballistic performance and function. These M1 has a red painted tip, the M10 has a orange tip, and the M17 has a brown tip.
M1 .50 Caliber incendiary cartridge: The M1 incendiary cartridge is an incendiary cartridge primarily intended for use against aircraft and material. The M1 can be identified by its blue tip.
M23 .50 Caliber incendiary cartridge: The M23 incendiary cartridge is similar to the M1 incendiary cartridge and is used in the same capacity as the M1. The M23 cartridge has a blue tip with a light blue ring below it.
M2 .50 Caliber armor piercing cartridge: The M2 armor piercing cartridge was designed for use against soft skinned and lightly armored vehicles as well as for use against enemy built up defensive positions. It has no incendiary component. The M2 can be identified by its black tip.
M8 .50 Caliber armor piercing / incendiary cartridge: The M8 armor piercing / incendiary cartridge was designed for use against soft skinned and lightly armored vehicles as well as material destruction. It has an incendiary component. The M8 can be identified by its silver (aluminum) tip.
M20 .50 Caliber armor piercing / incendiary tracer cartridge: The M20 armor piercing / incendiary tracer cartridge is the tracer variant of the M8 API cartridge. The M20 can be identified by its red tip with a silver (aluminum) ring below that.
M1A1 .50 Caliber blank firing cartridge: Designed for use with training simulators, the M1A1 has no projectile and contains a reduced powder charge. The M1A1 can be identified by its crimped and sealed cartridge opening in place of a projectile.
History: Soon after American servicemen deployed to Europe for World War One, it was recognized that an automatic weapon capable of firing a cartridge larger than those currently in service was sorely needed. In addition to being more powerful than the standard rifle cartridge, this new cartridge would also need an armor penetrating capability to serve as a against the recently introduced tank. Although America was not able to produce such a weapon before the end of the war, research and experimentation with a number of captured German anti-tank firearms eventually lead to the Browning M1921A1 .50 caliber machine gun. Introduced in 1922, the Browning M1921A1 machine gun fired a massive .50 caliber cartridge and had an effective range of over 1000 meters. The M1921A1 was later modified to improve barrel life and reliability, and was redesignated the M2HB (heavy barrel) machine gun in 1933. The M2HB is still in service with the U.S. military where it is used in a number of roles, ranging from infantry heavy machine gun to vehicle, helicopter, and small boat and craft armament.
|
|

David
Tue February 11, 2003 1:09pm
|
5.56mm Cartridge
Description: There are currently five 5.56mm cartridges in service.
M193 NATO 5.56mm ball cartridge: Introduced in 1964, the M193 was the original 5.56mm cartridge designed for use in the M-16 rifle with a 1 in 12 rifled barrel twist. No longer in production, but still in stock, it has been replaced by the heavier M855 cartridge. The M193 can be identified by its unpainted (copper) tip.
M855 NATO 5.56mm ball cartridge: Introduced as a replacement for the M193 cartridge, the M855 fires a heavier projectile with greater accuracy. While the cartridge was designed to be fired from the newer heavy barreled M-16A2 assault rifle and M-4 carbine (each of which has a 1 in 7 twist barrel) it may be fired out of older M-16 models without severe degradation of accuracy. The M855 can be identified by its green painted tip.
M856 NATO 5.56mm ball/tracer cartridge: Introduced with the M855, the M856 is the tracer variant of the M855. It is, in all respects, identical to the M855. The M856 can be identified by its orange painted tip.
M200 NATO 5.56mm blank firing cartridge: Designed for use with training simulators, the M200 has no projectile and contains a reduced powder charge. The M200 can be identified by its crimped and sealed cartridge opening in place of a projectile.
M862 5.56mm Short Range Training Ammunition: Designed for indoor use, the M862 is a restricted range alternative to the M193/M855 cartridge. With a maximum range of 250 meters and an effective range of 25 meters, the M862 serves as an excellent low cost substitute for Basic Rifle Marksmanship (BRM) training. The M862 can be identified by its blue plastic tip.
History: In the mid 1950s testing was begun on finding a lighter replacement for the Winchester .308 (NATO 7.62mm) infantry rifle cartridge used by the in the M-14 rifle. Eventually three cartridges were select for further testing; the .222 Special, .224 Springfield, .222 Winchester. All were essentially lengthened versions of the recently introduced .222 Remington. Eventually the .222 Special was adopted and re-designated as the .223 Remington. The .223 Remington was introduced, along with the Armalite AR-15 Assault rifle, for experimental use by the Army in 1957. In 1964 the cartridge was officially adopted by the U.S. Army as the M193 5.56mm ball for use in the M-16 rifle (which was, itself, based on the Armalite AR-15.
|
|

David
Tue February 11, 2003 2:04pm
|
AN/ALQ-135
Function: Internal countermeasures set.
Description: The F-15 TEWS consists of the AN/ALR-56C radar warning receiver (RWR), the AN/ALQ-135 internal countermeasures set (ICS), the AN/ALQ-128 electronic warfare warning set, and the AN/ALE-40/45 countermeasures dispenser. The TEWS provides electronic detection and identification of both surface and airborne threats. In addition, it allows for activation of appropriate countermeasures to include electronic jamming and dispensing of expendables such as chaff and flares Integral to the F-15 TEWS, the ALQ-135 ICS is an internally mounted responsive jammer designed to counter surface to air threats with minimum air crew activity. The system is sized to fit into the limited space of the F-15E interdiction aircraft's ammunition bay although upgraded components have also been retrofitted into the F-15C air superiority variant. The system has an improved reprogramming support capability to rapidly change pre-flight message (PFM) software in response to changing threat parameters and mission requirements. The ALQ-135 ICS has been fielded in several phases to provide incremental improvements to jamming coverage. Phase one has provided an initial Band 3 capability that includes integrated operation with both the F-15E fire control radar and the ALR-56C RWR. ALQ-135 ICS Band 3 capability currently allows full interoperability and robust jamming techniques against modern pulse Doppler radar. Full system capability requires the installation and integration of Band 1.5 hardware to provide coverage against threats operating in the lower frequency range. . The F-15 TEWS AN/ALQ-135 Band 1.5 contributes to full-dimensional protection by improving individual aircraft probability of survival through improved air crew situation awareness of the radar guided threat environment, cueing of both active and passive counter measures in Band 1.5 frequency spectrum, and waveform select feature for jamming optimization against specific threats.
AFOTEC was directed to conduct an interim TEWS OA to characterize the operational capabilities and limitations of the fielded systems and assess readiness for IOT&E. The OA concluded in September 1994 recommended five ALQ-135 improvements: interoperability with the APG-70 radar; system response times; built-in-test (BIT) displays; BIT accuracy; and low band frequency coverage for the F-15E (i.e., Band 1.5).
FOT&E operations conducted by the United States Air Force Air Warfare Center (USAFAWC) concluded in August of 1996, addressed ALQ-135 Band 3 ICS interoperability with the APG-70 radar and improvements in the BIT displays. The USAFAWC is currently conducting FOT&E at the Multi-Spectral Threat Environment (MSTE) range located at Eglin AFB to evaluate intra-flight (wing man) compatibility, the advanced threat de-interleave processor (for improved system response times), and jamming effectiveness and BIT upgrades.
History: The ALQ-135 is an outgrowth of an early 1980s feasibility demonstration and follow-on quick reaction capability (QRC) high band jammer developed to counter rapidly changing threats. Developmental problems precipitated a restructuring of the ALQ-135 ICS program in 1988 to provide incremental capabilities. A TEWS EOA of the Phase I Band 3 ICS was planned in July 1989 to support F-15E IOC. However, technical problems delayed EOA start until July 1990. Fifteen sorties were flown against threat simulators on the Eglin AFB, FL range complex in air-to-air and air-to-ground mission scenarios. The ICS demonstrated the capability to identify and counter most current threats in a limited density environment, but the test indicated additional software and hardware development was needed to achieve desired operational capabilities.
|
|

David
Tue February 11, 2003 2:14pm
|
AN/APY-1/2
Function: Early Warning sensor.
Description: Housed in a dome 30 feet (9.1 meters) in diameter, six feet (1.8 meters) thick, and suspended 11 feet (3.3 meters) above the fuselage on two struts, the AN/APY-1/2 radar is the most notable feature of the E-3 Airborne Early Warning aircraft. Introduced in 1977, the APY-1/2 equipped Sentry aircraft have served as the primary AEW sensor for both America and NATO. When in operation, the radar turns at 6 revolutions per minute, and is capable of scanning the sea, ground, and air in a 200 mile (320km) radius around the aircraft. The APY-1 radar is sensitive enough to detect and track slow moving, low altitude air targets over any terrain, and can track both sea and air targets simultaneously. The AN/APY-1/2 can operate in a variety of modes; Pulse Doppler Non Elevation Scan for surveillance of airborne targets, Pulse Doppler Elevation Scan to determine the elevation, beyond the horizon pulse radar mode, receive only mode for passive operation, and maritime mode which uses very short pulse width for surface ship detection.
|
|

David
Tue February 11, 2003 2:14pm Rating: 10
|
AN/SPY-1
Function: Phased array radar.
Description: Introduced in 1983 as the heart of the Aegis Combat System and the new Ticonderoga class Guided Missile cruiser, the AN/SPY-1 multi-function, phased array radar was a radical departure from prior conventional radar systems. The AN/SPY-1 held several advantages over earlier radars; First, where a conventional radar such as the AN/SPS-49 must sweep through a 360 degree arc looking for targets, and can only see those targets while they are within the radar's rotating "cone" the AN/SPY-1 radar is made up of four flat panels on the ship's superstructure which continuously radiate in all directions simultaneously, thereby allowing the system to acquire multiple targets coming in from multiple directions. Second, while a second radar is required to direct weapons to the target once it is acquired by the search radar, the phased array SPY-1 is capable performing both tasks simultaneously. Radiating four million watts of power, the AN/SPY-1 can acquire and track targets as far out as 250 miles and as far up as low Earth orbit. In addition, the phased array system can track 100 targets simultaneously and engage them automatically, prioritizing targets by threat characteristics. There are currently four versions of the SPY-1 radar in service. Block I, the SPY-1A, was introduced with the USS Ticonderoga (CG47) and installed through the USS Philippine Sea(CG 58). Block II, the SPY-1B and it's later upgrade, the SPY-1B(V), was installed on the USS Princeton (CG59) and all subsequent Aegis cruisers, through USS Port Royal (CG 73). Introduced on July 4, 1991, the Arleigh Burke class Guided Missile destroyers are all equipped with the improved AN/SPY-1D. Finally, there is a reduced capacity version of the SPY-1D, designated the SPY-1F, available for installation on frigate sized vessels. While the United States does not currently intend to back-fit any of its Oliver Hazard Perry class frigates with the SPY-1F, the system is available for export.
|
|

David
Fri March 21, 2003 6:17am
|
High-power microwave (HPM
High-power microwave (HPM) sources have been under investigation for several years as potential weapons for a variety of combat, sabotage, and terrorist applications. Due to classification restrictions, details of this work are relatively unknown outside the military community and its contractors. A key point to recognize is the insidious nature of HPM. Due to the gigahertz-band frequencies (4 to 20 GHz) involved, HPM has the capability to penetrate not only radio front-ends, but also the most minute shielding penetrations throughout the equipment. At sufficiently high levels, as discussed, the potential exists for significant damage to devices and circuits. For these reasons, HPM should be of interest to the broad spectrum of EMC practitioners.
Electromagnetic Pulse (EMP) and High Powered Microwave (HMP) Weapons offer a significant capability against electronic equipment susceptible to damage by transient power surges. This weapon generates a very short, intense energy pulse producing a transient surge of thousands of volts that kills semiconductor devices. The conventional EMP and HMP weapons can disable non-shielded electronic devices including practically any modern electronic device within the effective range of the weapon.
The effectiveness of an EMP device is determined by the power generated and the characteristic of the pulse. The shorter pulse wave forms, such as microwaves, are far more effective against electronic equipment and more difficult to harden against. Current efforts focus on converting the energy from an explosive munitions to supply the electromagnetic pulse. This method produces significant levels of directionally focused electromagnetic energy.
Future advances may provide the compactness needed to weaponize the capability in a bomb or missile warhead. Currently, the radius of the weapon is not as great as nuclear EMP effects. Open literature sources indicate that effective radii of “hundreds of meters or more” are possible. EMP and HPM devices can disable a large variety of military or infrastructure equipment over a relatively broad area. This can be useful for dispersed targets.
A difficulty is determining the appropriate level of energy to achieve the desired effects. This will require detailed knowledge of the target equipment and the environment (walls, buildings). The obvious counter-measure is the shielding or hardening of electronic equipment. Currently, only critical military equipment is hardened e.g., strategic command and control systems. Hardening of existing equipment is difficult and adds significant weight and expense. As a result, a large variety of commercial and military equipment will be susceptible to this type of attack.
The US Navy reportedly used a new class of highly secret, non-nuclear electromagnetic pulse warheads during the opening hours of the Persian Gulf War to disrupt and destroy Iraqi electronics systems. The warheads converted the energy of a conventional explosion into a pulse of radio energy. The effect of the microwave attacks on Iraqi air defense and headquarters was difficult to determine because the effects of the HPM blasts were obscured by continuous jamming, the use of stealthy F-117 aircraft, and the destruction of Iraq's electrical grid. The warheads used during the Gulf War were experimental warheads, not standard weapons deployed with fielded forces.
Col. William G. Heckathorn, commander of the Phillips Research Site and the deputy director of the Directed Energy Directorate of the Air Force Research Laboratory, was presented the Legion of Merit medal during special retirement ceremonies in May 1998. In a citation accompanying the medal, Col. Heckathorn was praised for having provided superior vision, leadership, and direct guidance that resulted in the first high-power microwave weapon prototypes delivered to the warfighter. The citation noted that "Col. Heckathorn united all directed energy development within Army, Navy and Air Force, which resulted in an efficient, focused, warfighter-oriented tri-service research program." In December of 1994 he came to Kirtland to become the director of the Advanced Weapons and Survivability Directorate at the Phillips Laboratory. Last year he became the commander of the Phillips Laboratory while still acting as the director of the Advanced Weapons and Survivability Directorate.
As with a conventional munition, a microwave munition is a "single shot" munition that has a similar blast and fragmentation radius. However, while the explosion produces a blast, the primary mission is to generate the energy that powers the microwave device. Thus, for a microwave munition, the primary kill mechanism is the microwave energy, which greatly increases the radius and the footprint by, in some cases, several orders of magnitude. For example, a 2000-pound microwave munition will have a minimum radius of approximately 200 meters, or footprint of approximately 126,000 square meters.
Studies have examined the incorporation of a high power microwave weapon into the weapons bay of a conceptual uninhabited combat aerial vehicle. The CONOPS, electromagnetic compatibility and hardening (to avoid a self-kill), power requirements and potential power supplies, and antenna characteristics have been analyzed. Extensive simulations of potential antennas have been performed. The simulations examined the influence of the aircraft structure on the antenna patterns and the levels of leakage through apertures in the weapons bay. Other investigations examined issues concerning the electromagnetic shielding effectiveness of composite aircraft structures.
Collateral damage from E-bombs is dependent on the size and design of the specific bomb. An E-bomb that utilizes explosive power to obtain its damaging microwaves will result in typical blast and shrapnel damage. Ideally, an E-Bomb would be designed to minimize and dissipate most of the mechanical collateral damage. Human exposure to microwave radiation is hazardous within several meters of the epicenter. However, there is a relatively low risk of bodily damage at further distances.
Any non-military electronics within range of the E-bomb that have not been protected have a high probability of being damaged or destroyed. The best way to defend against E-bomb attack is to destroy the platform or delivery vehicle in which the E-bomb resides. Another method of protection is to keep all essential electronics within an electrically conductive enclosure, called a Faraday cage. This prevents the damaging electromagentic field from interacting with vital equipment. The problem with Faraday cages is that most vital equipment needs to be in contact with the outside world. This contact point can allow the electromagentic field to enter the cage, which ultimately renders the enclosure useless. There are ways to protect against these Faraday cage flaws, but the fact remains that this is a dangerous weakpoint. In most circumstances E-bombs are categorized as 'non-lethal weapons' because of the minimal collateral damage they create. The E-bomb's 'non-lethal' categorization gives military commanders more politically-friendly options to choose from.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

David
Fri March 21, 2003 6:41am
|
Arrow TMD
Israel began work on a potential theater missile defense (TMD) system in 1986, with the signing of a Memorandum of Understanding (MOU) with the United States. While the threat posed by ballistic missiles has been a concern for Israel since the mid-1980s, Iraqi ballistic missile attacks during the Gulf War underscored the danger posed by the buildup of missile technology in the region. Given the lack of available Israeli resources for TMD development, the United States agreed to co-fund and co-develop an indigenously-produced Israeli TMD system. In 1988, the US and Israel began what was to evolve into a three-phase program to develop the ARROW series of Anti-Tactical Ballistic Missiles (ATBMs).
Arrow II is intended to satisfy the Israeli requirement for an interceptor for defense of military assets and population centers and will support US technology base requirements for new advanced anti-tactical ballistic missile technologies that could be incorporated into the US theater missile defense systems. The Arrow missile, a joint international project with Israel, is a long-range interceptor that offers the United States technology infusion, including lethality data; development of optical window technology applicable to both THAAD and Navy Area Defense programs; data from stage separation at high velocities and dynamic pressures; and, interoperability development that will allow synergistic operations of Arrow with US TMD systems, if required in future contingencies.
The Citron Tree battle management center, built by Tadiran, guides the Arrow 2 interceptor, developed by Israel Aircraft Industries' MLM Division. The entire anti-tactical ballistic missile project is called Homa.
The Arrow 2 system can detect and track incoming missiles as far way as 500 km and can intercept missiles 50-90 km away [some sources suggest the engagement range is 16 to 48km]. The Arrow 2 uses a terminally-guided interceptor warhead to destroy an incoming missile from its launch at an altitude of 10 to 40km at nine times the speed of sound. Since the missile does not need to directly hit the target--detonation within 40-50 meters is sufficient to disable an incoming warhead. The command and control system is designed to respond to as many as 14 simultaneous intercepts.
Comprised of three phases, this intiative began with the Arrow Experiments project (Phase I) that developed the preprototype Arrow I interceptor. Arrow I provided the basis for an informed GOI engineering and manufacturing decision for an ATBM defense capability.
The Phase II ARROW Continuation Experiments (ACES) Program was a continuation of Phase I, and consisted of critical lethality tests using the Arrow I interceptor with the Arrow II warhead and the design, development and test of the Arrow II interceptor. The first phase of ACES, completed in the third quarter FY 94, featured critical lethality tests using the Arrow I interceptor with the Arrow II warhead. Since program initiation in 1988, Israel successfully improved the performance of its pre-prototype Arrow I interceptor to the point that it achieved a successful intercept and target destruction in June 1994. The ACES resulted in a successful missile target intercept by a single stage ARROW-1 interceptor. The second phase of ACES consisted of the design, development and test of the Arrow II interceptor, which achieved two successful intercepts of simulated SCUD missiles on August 20, 1996 and March 11, 1997. The ACES Program ended in FY 1997, upon the completion of ARROW intercept tests.
The third phase is the Arrow Deployability Project (ADP), which began in FY96, aimed at integrating the entire ARROW Weapon System (AWS) with a planned User Operational Evaluation System (UOES) capability. Continuing through 2001, the ADP will be the cornerstone for US/Israeli BMD cooperation. The Arrow Deployability Program involves a total commitment of $500 million over five years, with $300 million contributed by Israel and $200 million from the United States. This will allow for the integration of the jointly developed Arrow interceptor with the Israeli developed fire control radar, launch control center and battle management center. This project will pursue the research and development of technologies associated with the deployment of the Arrow Weapon System (AWS) and will permit the GOI to make a decision regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort will include system-level flight tests of the US-Israeli cooperatively developed Arrow II interceptor supported by the Israeli-developed fire control radar and fire control center.
After US planning activities in FY 94/95, the Arrow Deployability Project (ADP) pursued the research and development of technologies associated with the deployment of the Arrow Weapon System and to permit the Government of Israel to make a decision on its own initiative regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort included three system-level flight tests of the Arrow II interceptor and launcher supported by the Israeli-developed fire control radar and battle management control center. Studies will be done to define interfaces required for Arrow Weapon System interoperability with US TMD systems, lethality, kill assessment and producibility.
Prior to obligation of funds to execute ADP R&D efforts, the President must certify to the Congress that a Memorandum of Agreement (MOA) exists with Israel for these projects, that each project provides benefits to the US, that the Arrow missile has completed a successful intercept, and that the Government of Israel continues to adhere to export controls pursuant to the Missile Technology Control Regime (MTCR). Subsequent US-Israeli cooperative R&D on other ballistic missile defense concepts would occur in the future.
Although there is a general policy of denial for Category I missile programs as defined in the the Missile Technology Control Regime (MTCR) guidelines, an exception has been made for the Arrow theater missile defense program. In the Arrow program, the challenge the United States faces is to transfer capabilities to defend against missile attacks without releasing technologies for manufacturing missiles.
In a test in September 1998 the Arrow 2 simulated an intercept against a point in space 97 seconds after being fired from the Palmachim military base south of Tel Aviv. The first integrated intercept flight test was successfully conducted in Israel on 01 November 1999. The Green Pine radar detected a Scud-class ballistic target and the Citron Tree battle management center commanded the launch of the Arrow II interceptor and communicated with it in-flight to successfully destroy the incoming missile.
On 27 August 2001, Israel successfully tested the Arrow-2 anti-missile missile in the ninth test of the anti-ballistic missile system. The target was a missile, called the Black Sparrow, which was dropped from an IAF F-15 fighter jet at high altitude. The Arrow-2 Green Pine radar detected the missile, and the Citron fire-control center launched the Arrow-2 interceptor. The target was intercepted about 100 kilometers from the coastline, the highest and farthest that the Arrow-2 had been tested to date.
An interface has been developed and delivered in Israel for AWS interoperability with US TMD systems based on a common JTIDS/Link-16 communications architecture and message protocol. The BMDO-developed Theater Missile Defense System Exerciser (TMDSE) will conduct interactive simulation exercises to test, assess, and validate the JTIDS-based interoperability between the AWS and US TMD systems. Once the TMDSE experiments are completed in FY01, the AWS will be certified as fully interoperable with any deployed US TMD systems.
Israel planned to defend itself against short- and medium-range ballistic missile attacks with two Arrow 2 batteries located at only two strategic sites. According to its original 1986 schedule, the Arrow system was supposed to enter operational service in 1995. By 2000 Israel was reported to have deployed several batteries of Arrow-2 anti-missile missiles. According to some [probably erroneous] reports, these were along the Israeli- Lebanese borders.
The first Arrow Weapon System (AWS) battery was deployed in Israel in early 2000. The first battery of the Arrow missiles is deployed in the center of the country, with the newly developed missile defense system entering operation on 12 March 2000. According to some reports, the first Arrow battery was operational at the Palmachim base [some reports suggest that the first battery was in the southern Negev desert at the Dimona nuclear facility].
Israel is built a second state-of-the-art anti-missile battery in the center of the country to fend off missile attacks. A second battery is to be placed at Ein Shemer east of Hadera, but was delayed by strong opposition from residents who claim its radar would be hazardous to their health. The new battery, about six miles from the central town of Hadera, was officially "for training purposes" as of mid-2002, but the sources said it already had operational capability. By late 2002 Israel was trying to make the second battery operational before any American attack on Iraq. The Arrow missile launchers from the second battery could be linked to the Green Pine radar of the Palmachim battery to improve its effectiveness.
Israel had originally planned to deploy two Arrow 2 batteries but has since sought and won promises of funding for a third battery. The US Congress approved the funding of $81.6 million toward the cost of a third batteries. Each battery reportedly costs about $170m.
The joint US-Israeli project, which includes missiles, interceptor launcher batteries, the Green Pine radar and the Citron Tree fire-control system, cost $1.3 billion to develop. The final bill is expected to be double the billion dollars spent so far. This cost could be reduced if the Arrow 2 is sold to other countries which have expressed interest - such as Great Britain, Turkey, Japan and reportedly India.
The Green Pine radar used by the Arrow 2 was sold to India with US approval, and was deployed in India in 2001. In early 2002 American officials sought to stop Israel from selling the Arrow 2 interceptor missile to India, arguing that the sale would violate the Missile Technology Control Regime. Although the Arrow 2 interceptor could possibly achieve a range of 300 km, it is designed for intercepts at shorter ranges, and it is unclear whether it could carry a 500-kg payload to the 300-km range specified in the MTCR.
|
|

David
Fri March 21, 2003 6:41am
|
Arrow TMD
Israel began work on a potential theater missile defense (TMD) system in 1986, with the signing of a Memorandum of Understanding (MOU) with the United States. While the threat posed by ballistic missiles has been a concern for Israel since the mid-1980s, Iraqi ballistic missile attacks during the Gulf War underscored the danger posed by the buildup of missile technology in the region. Given the lack of available Israeli resources for TMD development, the United States agreed to co-fund and co-develop an indigenously-produced Israeli TMD system. In 1988, the US and Israel began what was to evolve into a three-phase program to develop the ARROW series of Anti-Tactical Ballistic Missiles (ATBMs).
Arrow II is intended to satisfy the Israeli requirement for an interceptor for defense of military assets and population centers and will support US technology base requirements for new advanced anti-tactical ballistic missile technologies that could be incorporated into the US theater missile defense systems. The Arrow missile, a joint international project with Israel, is a long-range interceptor that offers the United States technology infusion, including lethality data; development of optical window technology applicable to both THAAD and Navy Area Defense programs; data from stage separation at high velocities and dynamic pressures; and, interoperability development that will allow synergistic operations of Arrow with US TMD systems, if required in future contingencies.
The Citron Tree battle management center, built by Tadiran, guides the Arrow 2 interceptor, developed by Israel Aircraft Industries' MLM Division. The entire anti-tactical ballistic missile project is called Homa.
The Arrow 2 system can detect and track incoming missiles as far way as 500 km and can intercept missiles 50-90 km away [some sources suggest the engagement range is 16 to 48km]. The Arrow 2 uses a terminally-guided interceptor warhead to destroy an incoming missile from its launch at an altitude of 10 to 40km at nine times the speed of sound. Since the missile does not need to directly hit the target--detonation within 40-50 meters is sufficient to disable an incoming warhead. The command and control system is designed to respond to as many as 14 simultaneous intercepts.
Comprised of three phases, this intiative began with the Arrow Experiments project (Phase I) that developed the preprototype Arrow I interceptor. Arrow I provided the basis for an informed GOI engineering and manufacturing decision for an ATBM defense capability.
The Phase II ARROW Continuation Experiments (ACES) Program was a continuation of Phase I, and consisted of critical lethality tests using the Arrow I interceptor with the Arrow II warhead and the design, development and test of the Arrow II interceptor. The first phase of ACES, completed in the third quarter FY 94, featured critical lethality tests using the Arrow I interceptor with the Arrow II warhead. Since program initiation in 1988, Israel successfully improved the performance of its pre-prototype Arrow I interceptor to the point that it achieved a successful intercept and target destruction in June 1994. The ACES resulted in a successful missile target intercept by a single stage ARROW-1 interceptor. The second phase of ACES consisted of the design, development and test of the Arrow II interceptor, which achieved two successful intercepts of simulated SCUD missiles on August 20, 1996 and March 11, 1997. The ACES Program ended in FY 1997, upon the completion of ARROW intercept tests.
The third phase is the Arrow Deployability Project (ADP), which began in FY96, aimed at integrating the entire ARROW Weapon System (AWS) with a planned User Operational Evaluation System (UOES) capability. Continuing through 2001, the ADP will be the cornerstone for US/Israeli BMD cooperation. The Arrow Deployability Program involves a total commitment of $500 million over five years, with $300 million contributed by Israel and $200 million from the United States. This will allow for the integration of the jointly developed Arrow interceptor with the Israeli developed fire control radar, launch control center and battle management center. This project will pursue the research and development of technologies associated with the deployment of the Arrow Weapon System (AWS) and will permit the GOI to make a decision regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort will include system-level flight tests of the US-Israeli cooperatively developed Arrow II interceptor supported by the Israeli-developed fire control radar and fire control center.
After US planning activities in FY 94/95, the Arrow Deployability Project (ADP) pursued the research and development of technologies associated with the deployment of the Arrow Weapon System and to permit the Government of Israel to make a decision on its own initiative regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort included three system-level flight tests of the Arrow II interceptor and launcher supported by the Israeli-developed fire control radar and battle management control center. Studies will be done to define interfaces required for Arrow Weapon System interoperability with US TMD systems, lethality, kill assessment and producibility.
Prior to obligation of funds to execute ADP R&D efforts, the President must certify to the Congress that a Memorandum of Agreement (MOA) exists with Israel for these projects, that each project provides benefits to the US, that the Arrow missile has completed a successful intercept, and that the Government of Israel continues to adhere to export controls pursuant to the Missile Technology Control Regime (MTCR). Subsequent US-Israeli cooperative R&D on other ballistic missile defense concepts would occur in the future.
Although there is a general policy of denial for Category I missile programs as defined in the the Missile Technology Control Regime (MTCR) guidelines, an exception has been made for the Arrow theater missile defense program. In the Arrow program, the challenge the United States faces is to transfer capabilities to defend against missile attacks without releasing technologies for manufacturing missiles.
In a test in September 1998 the Arrow 2 simulated an intercept against a point in space 97 seconds after being fired from the Palmachim military base south of Tel Aviv. The first integrated intercept flight test was successfully conducted in Israel on 01 November 1999. The Green Pine radar detected a Scud-class ballistic target and the Citron Tree battle management center commanded the launch of the Arrow II interceptor and communicated with it in-flight to successfully destroy the incoming missile.
On 27 August 2001, Israel successfully tested the Arrow-2 anti-missile missile in the ninth test of the anti-ballistic missile system. The target was a missile, called the Black Sparrow, which was dropped from an IAF F-15 fighter jet at high altitude. The Arrow-2 Green Pine radar detected the missile, and the Citron fire-control center launched the Arrow-2 interceptor. The target was intercepted about 100 kilometers from the coastline, the highest and farthest that the Arrow-2 had been tested to date.
An interface has been developed and delivered in Israel for AWS interoperability with US TMD systems based on a common JTIDS/Link-16 communications architecture and message protocol. The BMDO-developed Theater Missile Defense System Exerciser (TMDSE) will conduct interactive simulation exercises to test, assess, and validate the JTIDS-based interoperability between the AWS and US TMD systems. Once the TMDSE experiments are completed in FY01, the AWS will be certified as fully interoperable with any deployed US TMD systems.
Israel planned to defend itself against short- and medium-range ballistic missile attacks with two Arrow 2 batteries located at only two strategic sites. According to its original 1986 schedule, the Arrow system was supposed to enter operational service in 1995. By 2000 Israel was reported to have deployed several batteries of Arrow-2 anti-missile missiles. According to some [probably erroneous] reports, these were along the Israeli- Lebanese borders.
The first Arrow Weapon System (AWS) battery was deployed in Israel in early 2000. The first battery of the Arrow missiles is deployed in the center of the country, with the newly developed missile defense system entering operation on 12 March 2000. According to some reports, the first Arrow battery was operational at the Palmachim base [some reports suggest that the first battery was in the southern Negev desert at the Dimona nuclear facility].
Israel is built a second state-of-the-art anti-missile battery in the center of the country to fend off missile attacks. A second battery is to be placed at Ein Shemer east of Hadera, but was delayed by strong opposition from residents who claim its radar would be hazardous to their health. The new battery, about six miles from the central town of Hadera, was officially "for training purposes" as of mid-2002, but the sources said it already had operational capability. By late 2002 Israel was trying to make the second battery operational before any American attack on Iraq. The Arrow missile launchers from the second battery could be linked to the Green Pine radar of the Palmachim battery to improve its effectiveness.
Israel had originally planned to deploy two Arrow 2 batteries but has since sought and won promises of funding for a third battery. The US Congress approved the funding of $81.6 million toward the cost of a third batteries. Each battery reportedly costs about $170m.
The joint US-Israeli project, which includes missiles, interceptor launcher batteries, the Green Pine radar and the Citron Tree fire-control system, cost $1.3 billion to develop. The final bill is expected to be double the billion dollars spent so far. This cost could be reduced if the Arrow 2 is sold to other countries which have expressed interest - such as Great Britain, Turkey, Japan and reportedly India.
The Green Pine radar used by the Arrow 2 was sold to India with US approval, and was deployed in India in 2001. In early 2002 American officials sought to stop Israel from selling the Arrow 2 interceptor missile to India, arguing that the sale would violate the Missile Technology Control Regime. Although the Arrow 2 interceptor could possibly achieve a range of 300 km, it is designed for intercepts at shorter ranges, and it is unclear whether it could carry a 500-kg payload to the 300-km range specified in the MTCR.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|
|