
David
Sat January 18, 2003 9:13am
|
Looking like a Roman cand
Looking like a Roman candle, the exhaust from an Air Force Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched on 3 January 1999 at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
|
|

David
Sat January 18, 2003 12:59pm
|
Tech. Sgt. Matthew W. Sch
Tech. Sgt. Matthew W. Scheiterle, a crew chief from the 81st Fighter Squadron at Spangdahlem, performs a post-flight inspection on an OA-10A Thunderbolt II Combat Search and Rescue (CSAR) aircraft. Crew chiefs inspect the aircraft after each flight looking for any signs of worn, loose or broken parts.
|
|

David
Tue February 11, 2003 2:14pm Rating: 10
|
AN/SPY-1
Function: Phased array radar.
Description: Introduced in 1983 as the heart of the Aegis Combat System and the new Ticonderoga class Guided Missile cruiser, the AN/SPY-1 multi-function, phased array radar was a radical departure from prior conventional radar systems. The AN/SPY-1 held several advantages over earlier radars; First, where a conventional radar such as the AN/SPS-49 must sweep through a 360 degree arc looking for targets, and can only see those targets while they are within the radar's rotating "cone" the AN/SPY-1 radar is made up of four flat panels on the ship's superstructure which continuously radiate in all directions simultaneously, thereby allowing the system to acquire multiple targets coming in from multiple directions. Second, while a second radar is required to direct weapons to the target once it is acquired by the search radar, the phased array SPY-1 is capable performing both tasks simultaneously. Radiating four million watts of power, the AN/SPY-1 can acquire and track targets as far out as 250 miles and as far up as low Earth orbit. In addition, the phased array system can track 100 targets simultaneously and engage them automatically, prioritizing targets by threat characteristics. There are currently four versions of the SPY-1 radar in service. Block I, the SPY-1A, was introduced with the USS Ticonderoga (CG47) and installed through the USS Philippine Sea(CG 58). Block II, the SPY-1B and it's later upgrade, the SPY-1B(V), was installed on the USS Princeton (CG59) and all subsequent Aegis cruisers, through USS Port Royal (CG 73). Introduced on July 4, 1991, the Arleigh Burke class Guided Missile destroyers are all equipped with the improved AN/SPY-1D. Finally, there is a reduced capacity version of the SPY-1D, designated the SPY-1F, available for installation on frigate sized vessels. While the United States does not currently intend to back-fit any of its Oliver Hazard Perry class frigates with the SPY-1F, the system is available for export.
|
|

David
Wed February 12, 2003 9:40pm
|
World War II Victory Meda
WORLD WAR II VICTORY MEDAL
1. Description: The bronze medal is 1 3/8 inches in width. On the obverse is a figure of Liberation standing full length with head turned to dexter looking to the dawn of a new day, right foot resting on a war god?s helmet with the hilt of a broken sword in the right hand and the broken blade in the left hand, the inscription "WORLD WAR II" placed immediately below the center. On the reverse are the inscriptions "FREEDOM FROM FEAR AND WANT" and "FREEDOM OF SPEECH AND RELIGION" separated by a palm branch, all within a circle composed of the words "UNITED STATES OF AMERICA 1914 1945".
2. Ribbon: The ribbon is 1 3/8 inches wide and consists of the following stripes: 3/8 inch double rainbow in juxtaposition (blues, greens, yellows, reds (center), yellows greens and blues); 1/32 inch White 67101; center 9/16 inch Old Glory Red 67156; 1/32 inch White; and 3/8 inch double rainbow in juxtaposition. The rainbow on each side of the ribbon is a miniature of the pattern used in the WWI Victory Medal.
3. Criteria: The WW II Victory Medal was awarded to all military personnel for service between 7 December 1941 and 31 December 1946.
4. Components: The following are authorized components and related items:
a. Medal (regular size): MIL-DTL-3943/237. Medal set with full size medal and ribbon bar. NSN 8455-00-269-5782.
b. Medal (miniature): MIL-DTL-3943/237. Available commercially.
c. Ribbon: MIL-DTL-11589/149. NSN 8455-00-257-0577. Available commercially.
d. Streamer: The WW II Victory Medal ribbon is not used as a streamer by the Army. The Navy and Marine Corps does use the ribbon design for a streamer.
5. Background:
a. The World War II Victory Medal was established by an Act of Congress on 6 July 1945 (Public Law 135, 79th Congress) and promulgated by Section V, War Department Bulletin 12, 1945.
b. The medal was designed by Mr. Thomas H. Jones and approved by the Secretary of War on 5 February 1946.
c. The Congressional authorization for the World War II Victory Medal included members of the Armed Forces of the Government of the Philippine Islands. It also specified the ending date would be the date of the termination of hostilities as proclaimed by the President. President Truman officially ended the state of hostilities on 31 December 1946.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

Unregistered
Sun March 23, 2003 9:56pm
|
Looking south
Kurdish soldiers in Chamchamal in Kurdish-controlled northern Iraq survey Iraqi army positions. Iraqi soldiers in the area reportedly opened fire several times Thursday morning while U.S. cruise missiles and bombs were falling on Baghdad.
|
|

Marissa
Tue March 25, 2003 6:17pm
|
U.S. Air Force Explosives
U.S. Air Force Explosives Ordinance Disposal (EOD) Craftsman Master Sgt. Joe Cross inches closer to an uncontrolled natural gas fire. His job is to prepare a safe path looking for booby traps so that firefighters can approach and extinguish the fire. Cross is with the 384th EOD Flight, Bahrain. Operation Iraqi Freedom is the multinational coalition effort to liberate the Iraqi people, eliminate Iraq's weapons of mass destruction and end the regime of Saddam Hussein.
|
|

tdeane
Wed April 23, 2003 7:29pm
|
Bow Shot, USS Alabama
Looking from the bow across the forward battery, 16" guns and the superstructure.
|
|

tdeane
Thu April 24, 2003 10:27am
|
USS Alabama, aft shot
View from fantail looking to aft section of superstucture and rear battery, 16" gun.
|
|

tdeane
Thu April 24, 2003 12:50pm
|
On deck, fantail of USS M
Looking out over fantail with Kingfisher on catapault. The USS Yorktown is in the distance.
|
|

39mto39g
Sat June 7, 2003 9:13am
|
dsc00208
Playing with the boys
|
|

1IDVET
Fri June 27, 2003 9:49pm Rating: 10
|
Bradley in Korea
This is a picture of me in Korea. I am on the left as you are looking at it.
1995
|
|

David
Sat January 3, 2004 8:51pm
|
Phalanx Close-In Weapons
Function: Anti-ship missile defense.
Description: Phalanx provides ships of the U.S. Navy with a "last-chance" defense against anti-ship missiles and littoral warfare threats that have penetrated other fleet defenses. Phalanx automatically detects, tracks and engages anti-air warfare threats such as anti-ship missiles and aircraft, while the Block 1B's man-in-the-loop system counters the emerging littoral warfare threat. This new threat includes small,high-speed surface craft, small terrorist aircraft, helicopters and surface mines. Phalanx accomplishes these engagements via an advanced search and track radar system integrated with a stabilized, forward looking infra-red (FLIR) detector. This integrated FLIR provides Phalanx with an unique multi-spectral detect and track capability for littoral warfare threats and dramatically improves the existing anti-air warfare capability. Block 1B also incorporates new Optimized Gun Barrels which provide improved barrel life, improved round dispersion and increased engagement ranges.
Phalanx is the only deployed close-in weapon system capable of autonomously performing its own search, detect, evaluation, track, engage and kill assessment functions. Phalanx also can be integrated into existing Combat Systems to provide additonal sensor and fire-control capability.
History: The Phalanx Close-In Weapons System (CIWS) underwent operational tests and evaluation onboard USS Bigelow in 1977, and exceeded maintenance and reliability specifications. Phalanx production started in 1978 with orders for 23 USN and 14 Foreign Military Sales (FMS) systems.
General Characteristics, Phalanx Close-In Weapons System
Contractor:
Raytheon Systems Company (formerly Hughes Missile Systems Company and purchased from General Dynamics Pomona Division in 1992)
Weight:
12,500 pounds (5,625 kilograms) - Later models: 13,600 pounds (6,120 kilograms)
Range:
Classified
Gun Type:
M-61A1 Gatling
Type of Fire:
3,000 rounds per minute
Later models: 4,500 rounds/min (starting 1988 production, Pneumatic Gun Drive)
Magazine Capacity:
989 rounds
Later models: 1,550 rounds
Caliber:
20mm
Ammunition:
Armor Piercing Discarding Sabot (APDS), Depleted Uranium sub-caliber penetrator (penetrator changed to Tungsten 1988; Block 1B will incorporate the new Enhanced Lethality Cartridge with a heavier penetrator)
Sensors:
Self-contained search and track radar with integrated FLIR
Date Deployed:
1980 (aboard USS Coral Sea)
Block 1: 1988 (aboard USS Wisconsin)
Block 1B: 1999 (aboard USS Underwood)
|
|

David
Sat January 3, 2004 9:38pm
|
MiG-29 Fulcrum
Function: High speed, high altitude, long range interceptor.
Description: Designed in 1972 to replace the aging MiG-21 and MiG-23, the Fulcrum represented a revolutionary devlopement in Soviet fighter aircraft performance. Though lacking the sophisticated electronics and "fly-by-wire" systems of contemporary Western aircraft like the American F-16 Falcon and the F-15 Eagle, the MiG-29's agility and maneuverability make it their equal in term of performance. In addition, the MiG-29 incorperates a unique forward looking infrared target aquisition system which allows the Fulcrum to aquire and engage targets with heat seeking missiles or its internally mounted cannon without being detected by radar-detecting threat warning recievers. To take advantage of the MiG-29's incredable turning ability, the pilot is equiped with a helmet mounted target designation reticle which can be used to designate and engage targets outside of the fighter's forward plane of travel.
Entering service in 1984 as the Fulcrum-A, the current production model is the Fulcrum-C, which incorperates a redesigned fuselage and increased internal fuel capacity.
General Characteristics, MiG-29 Fulcrum-A
Designer:
Mikoyan-Gurevich Design Bureau
Power Plant:
Two Sarkisov RD-33 afterburning turbofans
Thrust:
18,300 pounds each
Length:
17.32 meters (56.83 feet)
Height:
4.73 meters (15.5 feet)
Wingspan:
11.36 meters (37.25 feet)
Speed:
2,455 kmh (1,520 mph) at 30,000 feet
Ceiling:
17,000 meters (55,775 feet)
Weight:
15,240.7 kilograms (33,600 pounds) empty
Maximum Takeoff Weight:
18,499.8 kilograms (40,785 pounds)
Range:
2,100 kilometers (1,300 miles)
Crew:
One
Armament:
One GSh-30-1 30mm internally mounted cannon with 150 rounds of ammunition
3,000 kilograms (6,614 pounds) of external ordinance including missiles, rockets, gravity bombs, and guided munitions carried on six hardpoints
Date Deployed:
1984
|
|
|