
David
Sat January 18, 2003 1:02pm
|
A Charleston Air Force Ba
A Charleston Air Force Base, S.C., C-17 Globemaster III must contend with runways littered with mud and debris left behind from vehicles which share the runway at Tirana, Albania, on Friday, April 23, 1999. Flightline operations continue around the clock for Operation Sustain Hope and NATO Operation Allied Force.
|
|

David
Sat January 18, 2003 1:02pm
|
A Charleston Air Force Ba
A Charleston Air Force Base, S.C., C-17 Globemaster III departs Tirana, Albania, on Friday, April 23, 1999, after delivering cargo to Rinas Airport. Flightline operations continue around the clock for Operation Sustain Hope and NATO Operation Allied Force.
|
|

David
Sat January 18, 2003 1:02pm
|
Young refugees from the T
Young refugees from the Turkish refugee camp in Murrez, Albania, are not camera shy, they are all smiles. U.S. Civil Affairs visited the camp on Saturday, April 24, 1999, to survey the area for future camps. The United States is participating in Operation Sustain Hope, the NATO effort to bring in food, water, medicine and relief supplies, and to establish camps for the refugees fleeing from the Former Republic of Yugoslavia into Albania and Macedonia.
|
|

David
Sat January 18, 2003 1:02pm
|
Airman 1st Class Heather
Airman 1st Class Heather Schaefer (right) of Granite City, Ill., and Airman 1st Class Angel L. Daly of Concord, Calif., both members of the 86th Services Squadron, Ramstein Air Base, Germany, serve the first hot breakfast to U.S. troops deployed to Tirana, Albania, on Tuesday, April 20, 1999. The airmen are deployed to Tirana in support of Operation Sustain Hope.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

David
Fri March 21, 2003 6:30am
|
M1A2 MBT
The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.
During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.
Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.
A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.
The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.
The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.
The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.
Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.
The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.
Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.
System Enhancement Program upgrades are intended to:
improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.
The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.
FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.
The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.
The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.
The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.
The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.
In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.
The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.
If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.
The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
|
|

David
Fri March 21, 2003 6:41am
|
Arrow TMD
Israel began work on a potential theater missile defense (TMD) system in 1986, with the signing of a Memorandum of Understanding (MOU) with the United States. While the threat posed by ballistic missiles has been a concern for Israel since the mid-1980s, Iraqi ballistic missile attacks during the Gulf War underscored the danger posed by the buildup of missile technology in the region. Given the lack of available Israeli resources for TMD development, the United States agreed to co-fund and co-develop an indigenously-produced Israeli TMD system. In 1988, the US and Israel began what was to evolve into a three-phase program to develop the ARROW series of Anti-Tactical Ballistic Missiles (ATBMs).
Arrow II is intended to satisfy the Israeli requirement for an interceptor for defense of military assets and population centers and will support US technology base requirements for new advanced anti-tactical ballistic missile technologies that could be incorporated into the US theater missile defense systems. The Arrow missile, a joint international project with Israel, is a long-range interceptor that offers the United States technology infusion, including lethality data; development of optical window technology applicable to both THAAD and Navy Area Defense programs; data from stage separation at high velocities and dynamic pressures; and, interoperability development that will allow synergistic operations of Arrow with US TMD systems, if required in future contingencies.
The Citron Tree battle management center, built by Tadiran, guides the Arrow 2 interceptor, developed by Israel Aircraft Industries' MLM Division. The entire anti-tactical ballistic missile project is called Homa.
The Arrow 2 system can detect and track incoming missiles as far way as 500 km and can intercept missiles 50-90 km away [some sources suggest the engagement range is 16 to 48km]. The Arrow 2 uses a terminally-guided interceptor warhead to destroy an incoming missile from its launch at an altitude of 10 to 40km at nine times the speed of sound. Since the missile does not need to directly hit the target--detonation within 40-50 meters is sufficient to disable an incoming warhead. The command and control system is designed to respond to as many as 14 simultaneous intercepts.
Comprised of three phases, this intiative began with the Arrow Experiments project (Phase I) that developed the preprototype Arrow I interceptor. Arrow I provided the basis for an informed GOI engineering and manufacturing decision for an ATBM defense capability.
The Phase II ARROW Continuation Experiments (ACES) Program was a continuation of Phase I, and consisted of critical lethality tests using the Arrow I interceptor with the Arrow II warhead and the design, development and test of the Arrow II interceptor. The first phase of ACES, completed in the third quarter FY 94, featured critical lethality tests using the Arrow I interceptor with the Arrow II warhead. Since program initiation in 1988, Israel successfully improved the performance of its pre-prototype Arrow I interceptor to the point that it achieved a successful intercept and target destruction in June 1994. The ACES resulted in a successful missile target intercept by a single stage ARROW-1 interceptor. The second phase of ACES consisted of the design, development and test of the Arrow II interceptor, which achieved two successful intercepts of simulated SCUD missiles on August 20, 1996 and March 11, 1997. The ACES Program ended in FY 1997, upon the completion of ARROW intercept tests.
The third phase is the Arrow Deployability Project (ADP), which began in FY96, aimed at integrating the entire ARROW Weapon System (AWS) with a planned User Operational Evaluation System (UOES) capability. Continuing through 2001, the ADP will be the cornerstone for US/Israeli BMD cooperation. The Arrow Deployability Program involves a total commitment of $500 million over five years, with $300 million contributed by Israel and $200 million from the United States. This will allow for the integration of the jointly developed Arrow interceptor with the Israeli developed fire control radar, launch control center and battle management center. This project will pursue the research and development of technologies associated with the deployment of the Arrow Weapon System (AWS) and will permit the GOI to make a decision regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort will include system-level flight tests of the US-Israeli cooperatively developed Arrow II interceptor supported by the Israeli-developed fire control radar and fire control center.
After US planning activities in FY 94/95, the Arrow Deployability Project (ADP) pursued the research and development of technologies associated with the deployment of the Arrow Weapon System and to permit the Government of Israel to make a decision on its own initiative regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort included three system-level flight tests of the Arrow II interceptor and launcher supported by the Israeli-developed fire control radar and battle management control center. Studies will be done to define interfaces required for Arrow Weapon System interoperability with US TMD systems, lethality, kill assessment and producibility.
Prior to obligation of funds to execute ADP R&D efforts, the President must certify to the Congress that a Memorandum of Agreement (MOA) exists with Israel for these projects, that each project provides benefits to the US, that the Arrow missile has completed a successful intercept, and that the Government of Israel continues to adhere to export controls pursuant to the Missile Technology Control Regime (MTCR). Subsequent US-Israeli cooperative R&D on other ballistic missile defense concepts would occur in the future.
Although there is a general policy of denial for Category I missile programs as defined in the the Missile Technology Control Regime (MTCR) guidelines, an exception has been made for the Arrow theater missile defense program. In the Arrow program, the challenge the United States faces is to transfer capabilities to defend against missile attacks without releasing technologies for manufacturing missiles.
In a test in September 1998 the Arrow 2 simulated an intercept against a point in space 97 seconds after being fired from the Palmachim military base south of Tel Aviv. The first integrated intercept flight test was successfully conducted in Israel on 01 November 1999. The Green Pine radar detected a Scud-class ballistic target and the Citron Tree battle management center commanded the launch of the Arrow II interceptor and communicated with it in-flight to successfully destroy the incoming missile.
On 27 August 2001, Israel successfully tested the Arrow-2 anti-missile missile in the ninth test of the anti-ballistic missile system. The target was a missile, called the Black Sparrow, which was dropped from an IAF F-15 fighter jet at high altitude. The Arrow-2 Green Pine radar detected the missile, and the Citron fire-control center launched the Arrow-2 interceptor. The target was intercepted about 100 kilometers from the coastline, the highest and farthest that the Arrow-2 had been tested to date.
An interface has been developed and delivered in Israel for AWS interoperability with US TMD systems based on a common JTIDS/Link-16 communications architecture and message protocol. The BMDO-developed Theater Missile Defense System Exerciser (TMDSE) will conduct interactive simulation exercises to test, assess, and validate the JTIDS-based interoperability between the AWS and US TMD systems. Once the TMDSE experiments are completed in FY01, the AWS will be certified as fully interoperable with any deployed US TMD systems.
Israel planned to defend itself against short- and medium-range ballistic missile attacks with two Arrow 2 batteries located at only two strategic sites. According to its original 1986 schedule, the Arrow system was supposed to enter operational service in 1995. By 2000 Israel was reported to have deployed several batteries of Arrow-2 anti-missile missiles. According to some [probably erroneous] reports, these were along the Israeli- Lebanese borders.
The first Arrow Weapon System (AWS) battery was deployed in Israel in early 2000. The first battery of the Arrow missiles is deployed in the center of the country, with the newly developed missile defense system entering operation on 12 March 2000. According to some reports, the first Arrow battery was operational at the Palmachim base [some reports suggest that the first battery was in the southern Negev desert at the Dimona nuclear facility].
Israel is built a second state-of-the-art anti-missile battery in the center of the country to fend off missile attacks. A second battery is to be placed at Ein Shemer east of Hadera, but was delayed by strong opposition from residents who claim its radar would be hazardous to their health. The new battery, about six miles from the central town of Hadera, was officially "for training purposes" as of mid-2002, but the sources said it already had operational capability. By late 2002 Israel was trying to make the second battery operational before any American attack on Iraq. The Arrow missile launchers from the second battery could be linked to the Green Pine radar of the Palmachim battery to improve its effectiveness.
Israel had originally planned to deploy two Arrow 2 batteries but has since sought and won promises of funding for a third battery. The US Congress approved the funding of $81.6 million toward the cost of a third batteries. Each battery reportedly costs about $170m.
The joint US-Israeli project, which includes missiles, interceptor launcher batteries, the Green Pine radar and the Citron Tree fire-control system, cost $1.3 billion to develop. The final bill is expected to be double the billion dollars spent so far. This cost could be reduced if the Arrow 2 is sold to other countries which have expressed interest - such as Great Britain, Turkey, Japan and reportedly India.
The Green Pine radar used by the Arrow 2 was sold to India with US approval, and was deployed in India in 2001. In early 2002 American officials sought to stop Israel from selling the Arrow 2 interceptor missile to India, arguing that the sale would violate the Missile Technology Control Regime. Although the Arrow 2 interceptor could possibly achieve a range of 300 km, it is designed for intercepts at shorter ranges, and it is unclear whether it could carry a 500-kg payload to the 300-km range specified in the MTCR.
|
|

David
Fri March 21, 2003 6:41am
|
Arrow TMD
Israel began work on a potential theater missile defense (TMD) system in 1986, with the signing of a Memorandum of Understanding (MOU) with the United States. While the threat posed by ballistic missiles has been a concern for Israel since the mid-1980s, Iraqi ballistic missile attacks during the Gulf War underscored the danger posed by the buildup of missile technology in the region. Given the lack of available Israeli resources for TMD development, the United States agreed to co-fund and co-develop an indigenously-produced Israeli TMD system. In 1988, the US and Israel began what was to evolve into a three-phase program to develop the ARROW series of Anti-Tactical Ballistic Missiles (ATBMs).
Arrow II is intended to satisfy the Israeli requirement for an interceptor for defense of military assets and population centers and will support US technology base requirements for new advanced anti-tactical ballistic missile technologies that could be incorporated into the US theater missile defense systems. The Arrow missile, a joint international project with Israel, is a long-range interceptor that offers the United States technology infusion, including lethality data; development of optical window technology applicable to both THAAD and Navy Area Defense programs; data from stage separation at high velocities and dynamic pressures; and, interoperability development that will allow synergistic operations of Arrow with US TMD systems, if required in future contingencies.
The Citron Tree battle management center, built by Tadiran, guides the Arrow 2 interceptor, developed by Israel Aircraft Industries' MLM Division. The entire anti-tactical ballistic missile project is called Homa.
The Arrow 2 system can detect and track incoming missiles as far way as 500 km and can intercept missiles 50-90 km away [some sources suggest the engagement range is 16 to 48km]. The Arrow 2 uses a terminally-guided interceptor warhead to destroy an incoming missile from its launch at an altitude of 10 to 40km at nine times the speed of sound. Since the missile does not need to directly hit the target--detonation within 40-50 meters is sufficient to disable an incoming warhead. The command and control system is designed to respond to as many as 14 simultaneous intercepts.
Comprised of three phases, this intiative began with the Arrow Experiments project (Phase I) that developed the preprototype Arrow I interceptor. Arrow I provided the basis for an informed GOI engineering and manufacturing decision for an ATBM defense capability.
The Phase II ARROW Continuation Experiments (ACES) Program was a continuation of Phase I, and consisted of critical lethality tests using the Arrow I interceptor with the Arrow II warhead and the design, development and test of the Arrow II interceptor. The first phase of ACES, completed in the third quarter FY 94, featured critical lethality tests using the Arrow I interceptor with the Arrow II warhead. Since program initiation in 1988, Israel successfully improved the performance of its pre-prototype Arrow I interceptor to the point that it achieved a successful intercept and target destruction in June 1994. The ACES resulted in a successful missile target intercept by a single stage ARROW-1 interceptor. The second phase of ACES consisted of the design, development and test of the Arrow II interceptor, which achieved two successful intercepts of simulated SCUD missiles on August 20, 1996 and March 11, 1997. The ACES Program ended in FY 1997, upon the completion of ARROW intercept tests.
The third phase is the Arrow Deployability Project (ADP), which began in FY96, aimed at integrating the entire ARROW Weapon System (AWS) with a planned User Operational Evaluation System (UOES) capability. Continuing through 2001, the ADP will be the cornerstone for US/Israeli BMD cooperation. The Arrow Deployability Program involves a total commitment of $500 million over five years, with $300 million contributed by Israel and $200 million from the United States. This will allow for the integration of the jointly developed Arrow interceptor with the Israeli developed fire control radar, launch control center and battle management center. This project will pursue the research and development of technologies associated with the deployment of the Arrow Weapon System (AWS) and will permit the GOI to make a decision regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort will include system-level flight tests of the US-Israeli cooperatively developed Arrow II interceptor supported by the Israeli-developed fire control radar and fire control center.
After US planning activities in FY 94/95, the Arrow Deployability Project (ADP) pursued the research and development of technologies associated with the deployment of the Arrow Weapon System and to permit the Government of Israel to make a decision on its own initiative regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort included three system-level flight tests of the Arrow II interceptor and launcher supported by the Israeli-developed fire control radar and battle management control center. Studies will be done to define interfaces required for Arrow Weapon System interoperability with US TMD systems, lethality, kill assessment and producibility.
Prior to obligation of funds to execute ADP R&D efforts, the President must certify to the Congress that a Memorandum of Agreement (MOA) exists with Israel for these projects, that each project provides benefits to the US, that the Arrow missile has completed a successful intercept, and that the Government of Israel continues to adhere to export controls pursuant to the Missile Technology Control Regime (MTCR). Subsequent US-Israeli cooperative R&D on other ballistic missile defense concepts would occur in the future.
Although there is a general policy of denial for Category I missile programs as defined in the the Missile Technology Control Regime (MTCR) guidelines, an exception has been made for the Arrow theater missile defense program. In the Arrow program, the challenge the United States faces is to transfer capabilities to defend against missile attacks without releasing technologies for manufacturing missiles.
In a test in September 1998 the Arrow 2 simulated an intercept against a point in space 97 seconds after being fired from the Palmachim military base south of Tel Aviv. The first integrated intercept flight test was successfully conducted in Israel on 01 November 1999. The Green Pine radar detected a Scud-class ballistic target and the Citron Tree battle management center commanded the launch of the Arrow II interceptor and communicated with it in-flight to successfully destroy the incoming missile.
On 27 August 2001, Israel successfully tested the Arrow-2 anti-missile missile in the ninth test of the anti-ballistic missile system. The target was a missile, called the Black Sparrow, which was dropped from an IAF F-15 fighter jet at high altitude. The Arrow-2 Green Pine radar detected the missile, and the Citron fire-control center launched the Arrow-2 interceptor. The target was intercepted about 100 kilometers from the coastline, the highest and farthest that the Arrow-2 had been tested to date.
An interface has been developed and delivered in Israel for AWS interoperability with US TMD systems based on a common JTIDS/Link-16 communications architecture and message protocol. The BMDO-developed Theater Missile Defense System Exerciser (TMDSE) will conduct interactive simulation exercises to test, assess, and validate the JTIDS-based interoperability between the AWS and US TMD systems. Once the TMDSE experiments are completed in FY01, the AWS will be certified as fully interoperable with any deployed US TMD systems.
Israel planned to defend itself against short- and medium-range ballistic missile attacks with two Arrow 2 batteries located at only two strategic sites. According to its original 1986 schedule, the Arrow system was supposed to enter operational service in 1995. By 2000 Israel was reported to have deployed several batteries of Arrow-2 anti-missile missiles. According to some [probably erroneous] reports, these were along the Israeli- Lebanese borders.
The first Arrow Weapon System (AWS) battery was deployed in Israel in early 2000. The first battery of the Arrow missiles is deployed in the center of the country, with the newly developed missile defense system entering operation on 12 March 2000. According to some reports, the first Arrow battery was operational at the Palmachim base [some reports suggest that the first battery was in the southern Negev desert at the Dimona nuclear facility].
Israel is built a second state-of-the-art anti-missile battery in the center of the country to fend off missile attacks. A second battery is to be placed at Ein Shemer east of Hadera, but was delayed by strong opposition from residents who claim its radar would be hazardous to their health. The new battery, about six miles from the central town of Hadera, was officially "for training purposes" as of mid-2002, but the sources said it already had operational capability. By late 2002 Israel was trying to make the second battery operational before any American attack on Iraq. The Arrow missile launchers from the second battery could be linked to the Green Pine radar of the Palmachim battery to improve its effectiveness.
Israel had originally planned to deploy two Arrow 2 batteries but has since sought and won promises of funding for a third battery. The US Congress approved the funding of $81.6 million toward the cost of a third batteries. Each battery reportedly costs about $170m.
The joint US-Israeli project, which includes missiles, interceptor launcher batteries, the Green Pine radar and the Citron Tree fire-control system, cost $1.3 billion to develop. The final bill is expected to be double the billion dollars spent so far. This cost could be reduced if the Arrow 2 is sold to other countries which have expressed interest - such as Great Britain, Turkey, Japan and reportedly India.
The Green Pine radar used by the Arrow 2 was sold to India with US approval, and was deployed in India in 2001. In early 2002 American officials sought to stop Israel from selling the Arrow 2 interceptor missile to India, arguing that the sale would violate the Missile Technology Control Regime. Although the Arrow 2 interceptor could possibly achieve a range of 300 km, it is designed for intercepts at shorter ranges, and it is unclear whether it could carry a 500-kg payload to the 300-km range specified in the MTCR.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 6:49am
|
Patriot PAC-3 ERINT
Patriot Advanced Capability-3 (PAC-3) is a high/medium advanced surface-to-air guided missile air defense system. PAC-3 is a major upgrade to the Patriot system. The PAC-3 Operational Requirements Document (ORD) represents the Army Air Defense need to buy back required battlespace lost against the current and evolving tactical missile and air breathing threat. PAC-3 is needed to ounter/defeat/destroy the 2008 threat and to extend Patriot's capabilities to accomplish new/revised missions. In tandem with the upgraded radar and ground control station, PAC-3 interceptors can protect an area about seven times greater than the original Patriot system.
The PAC-3 Program consists of two interrelated acquisition programs - The PAC-3 Growth Program and the PAC-3 Missile Program. The Growth program consists of integrated, complementary improvements that will be implemented by a series of phased, incrementally fielded material changes. The PAC-3 Missile program is a key component of the overall improvements of the Patriot system, it will provide essential increases in battlespace, accuracy, and kill potential.
PAC-3 is a much more capable derivative of the PAC-2/GEM system in terms of both coverage and lethality. The PAC-3 has a new interceptor missile with a different kill mechanism--rather than having an exploding warhead, it is a hit-to-kill system. The PAC-3 missile is a smaller and highly efficient missile. The canister is approximately the same size as a PAC-2 canister but contains four missiles and tubes instead of a single round. Selected Patriot launching stations will be modified to accept PAC-3 canisters.
The Battalion Tactical Operations Center (BTOC) is an M900 series 5-ton expandable van that has been modified by the addition of data processing and display equipment, and utilized by the battalion staff to command and control the Patriot battalion. The BTOC allows the staff to perform automated tactical planning, communications link planning, and to display situational awareness information.
In the 1997 budget DOD added about $230 million for the PAC-3 through the Future Years Defense Program (FYDP) and established a realistic schedule to lower the program execution risk by extending the engineering and manufacturing development (EMD) phase of the program by ten months. System performance will be improved by re-phasing the missile and radar procurements; upgrading three launchers per battery with Enhanced Launcher Electronics Systems; and extending the battery's remote launch capability. PAC-3 Low-Rate Initial Production (LRIP) will begin in the second quarter of fiscal year 1998, and the First Unit Equipped (FUE) date is planned for the fourth quarter of fiscal year 1999. The FUE capability will consist of 16 missiles and five radars which will be placed in one battalion. As of 1996, in addition to funds being programmed for the Ballistic Missile Defense Organization, the Army planned to spend $9.6 billion for all planned purchases of Patriot missiles, $490 million for modifications and $335 million for product improvements.
The Patriot Advanced Capability 3 (PAC-3) Initial Operational Test and Evaluation (IOTE) began in 2002. The two major objectives of the Initial Operational Test and Evaluation (IOTE) are: (1) To assess the improvements in system performance provided by modifications in terms of operational effectiveness, suitability, and survivability; (2) to verify that modifications do not degrade the existing capabilities. The Initial Operational Test and Evaluation (IOTE) will be the first operational integration and assessment of the complete Patriot Advanced Capability 3 (PAC-3) Configuration 3 system.
The 2nd Battalion 43rd Air Defense Artillery/108th Air Defense Artillery Brigade serves as the test unit for the Initial Operational Test and Evaluation (IOTE). The unit is equipped with the complete package of Patriot Advanced Capability 3 (PAC-3) Configuration 3 hardware, PDB-5+ software and the Patriot Advanced Capability 3 (PAC-3) missile. The Patriot Project Office has issued the upgraded equipment to 2-43 Air Defense Artillery. 2-43 has completed New Equipment Training (NET) and supports testing necessary to obtain material release of the Patriot Advanced Capability 3 (PAC-3) Missile equipment.
The Initial Operational Test and Evaluation (IOTE) is conducted in four phases: (1) The Sustained Operations Phase is a five-day deployment to McGregor Range using approved tactics and doctrine. 2-43 Air Defense Artillery will defend against live aircraft in accordance with threat test support package in a simulated combat environment; (2) The Interoperability Phase is a six-day demonstration of the Patriot Advanced Capability 3 (PAC-3) interoperability with current Army and Joint Theater Missile Defense Systems. This phase is conducted using the Joint Common Simulated Missile Defense System Exerciser or actual tactical equipment; (3) The Flight Mission Simulator (FMS) Phase is a 22-day test of simulated air battles. The mobile Flight Mission Simulator (FMS) is a Patriot missile system simulation used to stimulate and evaluate radar performance, engagement decision and weapon assignment (EDWA) processing and test the Patriot Advanced Capability 3 (PAC-3)’s capabilities against a full spectrum of threat targets; (4) The Missile Flight Test Phase consists of four live missile tests conducted at White Sands Missile Range and Kwajalein Missile Range.
The Air Defense Artillery Directorate of the Operational Test Command conducts the planning and execution of the Initial Operational Test and Evaluation (IOTE). Once Initial Operational Test and Evaluation (IOTE) is complete, the Army Evaluation Center prepares the system evaluation report. This report provides input for the Patriot Advanced Capability 3 (PAC-3) missile Milestone III decision (full rate production) and the materiel release for the complete Patriot Advanced Capability 3 (PAC-3) system.
Four PAC-3 operational tests [some involving more than one interceptor launch] between February 2002 and May 2002 resulted in three launch failures, two misses and one hit that failed to destroy the incoming warhead. A malfunctioning radar and software problems led to the misses, and the launch failures resulted from electrical problems.
The Army received the first 16 PAC-3s -- a full launcher load -- in September 2001. The Army is authorized to produce the missiles at a rate of 72 a year, and Congress authorize an increase to 96 per year in fiscal 2003. The plan is to eventually produce 144 a year, leading to a total inventory of 1,159 interceptors. Unable to certify that the PAC-3 interceptor was ready for stepped-up production, in mid-2002 Pentagon put off the decision for at least a year, and planned on further testing once fixes are in place.
By early 2000 the cost of each PAC-3 missile had increased from $1.9 million to over $4 million, and the estimated total program cost had risen from $3.9 billion to $6.9 billion. After design and manufacturing modifications were initiated to control costs, the estimted cost per missile dropped to about $3 million, and as of mid-2002 program officials expected to reduce the unit cost to $2 million.
Initial reports of a successful intercept of a Patriot missile-as-target by a Pac-3 missile on 25 April 2002 have sinced proven to be incorrect. A US Army statement said that subsequent analysis showed that the Pac-3 impacted the target missile but failed to destroy the warhead, so the intercept was unsuccessful. A second Pac-3 in the same test failed to launch. A PAC-3 missile successfully intercepted a target ballistic missile over Kwajalein Atoll on 30 May 2002. A second missile, however, failed to launch for unknown reasons. A failure to launch also occurred in the last test on 25 April. The target was a modified Minuteman missile with a separating reentry vehicle. This was the last test in the Initial Operational Test and Evaluation (IOT&E) program, prior to a Pentagon assessment of PAC-3’s readiness for full-rate production.
As of late October 2002 the Army had taken delivery of 38 PAC-3 missiles, with another 15 due for delivery by December. The military is under contract to receive an additional 126 missiles over the 2003-2004 period. Congress increased the fiscal year 2003 budget request for PAC-3 of 72 missiles by an additional 48 missiles. In late November 2002, DOD approved plans to double PAC-3 monthly production rates, with the number of missiles increasing from four to eight per month after more manufacturing equipment and a second shift of personnel were added. DOD will acquire 108 PAC-3 missiles in FY 2004.
The overall procurement objective of 1,159 PAC-3 missiles remains unchanged. The larger purchases in FY-03 and FY-04 may be offset by lower production in FY-08 and FY-09. Instead of buying 216 missiles in each of those years, DOD would receive 184 units annually.
|
|

David
Fri March 21, 2003 7:38am
|
BGM-71 / M-220 Tube-launc
The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.
In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.
The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.
The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.
The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.
The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.
The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.
Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.
In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.
The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle
Marine Corps Inventory: TOW launchers - 1247
Characteristics of the TOW missile family
CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B
Missile weight (lb)
41.5
42
47.3
49.9
49.8
Weight in container (lb)
56.3
56.5
61.8
64
64
Prelaunch length (in)
45.8
45.8
45.9
45.9
46
Standoff probe (in)
NA
14.6
17.4
17.4
NA
Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309
Warhead diameter (in)
5
5
6
5
5(2x)
Explosive filler (lb)
5.4
4.6
6.9
6.9
-
Max range (m)
3000
3750
3750
3750
3750
|
|

David
Fri March 21, 2003 7:38am
|
BGM-71 / M-220 Tube-launc
The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.
In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.
The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.
The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.
The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.
The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.
The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.
Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.
In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.
The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle
Marine Corps Inventory: TOW launchers - 1247
Characteristics of the TOW missile family
CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B
Missile weight (lb)
41.5
42
47.3
49.9
49.8
Weight in container (lb)
56.3
56.5
61.8
64
64
Prelaunch length (in)
45.8
45.8
45.9
45.9
46
Standoff probe (in)
NA
14.6
17.4
17.4
NA
Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309
Warhead diameter (in)
5
5
6
5
5(2x)
Explosive filler (lb)
5.4
4.6
6.9
6.9
-
Max range (m)
3000
3750
3750
3750
3750
|
|

David
Fri March 21, 2003 7:38am
|
BGM-71 / M-220 Tube-launc
The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.
In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.
The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.
The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.
The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.
The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.
Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.
The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.
Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.
In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.
The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.
Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.
Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.
Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle
Marine Corps Inventory: TOW launchers - 1247
Characteristics of the TOW missile family
CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B
Missile weight (lb)
41.5
42
47.3
49.9
49.8
Weight in container (lb)
56.3
56.5
61.8
64
64
Prelaunch length (in)
45.8
45.8
45.9
45.9
46
Standoff probe (in)
NA
14.6
17.4
17.4
NA
Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309
Warhead diameter (in)
5
5
6
5
5(2x)
Explosive filler (lb)
5.4
4.6
6.9
6.9
-
Max range (m)
3000
3750
3750
3750
3750
|
|
|