
David
Thu January 16, 2003 12:43am
|
SR-71 Blackbird
Function: High altitude, high speed strategic reconnaissance platform.
Description: Developed for the Air Force in the early 60's as a high altitude, high speed strategic reconnaissance platform, the SR-71 is the world's fastest and highest-flying production aircraft. Also known as "The Sled", the SR-71 is capable of flying at speeds in excess of 2200 mph (Mach 3.5+) and at altitudes beyond 85,000 feet and has the ability to fly over 2,000 miles without refueling. At operational altitude and speed friction between the air and airframe generates so much heat that the SR-71 will expand by as much as 11 inches. As a result, the Blackbird's elastic fuel cells, which also serve as heat sinks once airborne, leak heavily on the ground and so the SR-71 is only loaded with sufficient JP-7 to get to refueling altitude where it takes on a full load before climbing once again to its operational altitude. Once at cruising altitude, fuel flow is automatically regulated so as to maintain the aircraft's center of ballance.
In addition, much of the airframe is constructed of titanium and titanium alloys which, in addition to reducing the weight of the airframe, are more resistant to severe thermal fluctuations than other building materials. Although the SR-71 is equipped with two very powerful engines, at its operational altitude the Blackbird achieves its incredible speed by dumping raw fuel into the compressed air produced by the continuous bleed turbojets, in effect turning the engines into continuously afterburning ramjets.
The SR-71 accommodates two crew members, a pilot and systems operator, in a stepped cockpit configuration. Because of the extreme altitudes and speeds that the Blackbird operates at, the crew members are require to wear fully enclosed pressure suits similar in design to those worn by astronauts. For reconnaissance missions the SR-71 can use a variety of electrical and optical systems tailored to each mission's specific requirements, which, when coupled with the Blackbird's speed, give it the ability to map over 100,000 square miles an hour (it would take the SR-71 approximately six minutes to map all of Italy).
General Characteristics, SR-71 Blackbird
Builder:
Lockheed-Martin
Power Plant:
Two Pratt and Whitney J-58 axial-flow continual bleed turbojets with afterburners
Thrust:
32,500 pounds each engine
Length:
107.4 feet (32.73 meters)
Height:
18.5 feet (5.63 meters)
Wingspan:
55.6 feet (16.94 meters)
Weight:
60,000 lbs (27,240 pounds)
Maximum Takeoff Weight:
170,000 pounds (77,180 kilograms)
Speed:
Over Mach 3.2 / 2,000 mph (3,200 kph)
Ceiling:
Over 85,000 feet (26,000 meters)
Range:
Over 2,000 miles (3,200 km) unrefueled
Crew:
Two
Date Deployed:
1966
|
|

David
Thu January 16, 2003 10:39am
|
AH-64 Apache
Function: Fire support and security for forward and rear area forces, point target/anti-armor, anti-helicopter, armed escort, supporting arms control and coordination, point and limited area air defense from enemy fixed-wing aircraft, armed and visual reconnaissance.
History: Apache production began in 1982 and the first unit was deployed in 1986. As of November 1993, 807 Apaches were delivered to the Army. The last Army Apache delivery is scheduled for December 1995. Thirty-three attack battalions are deployed and ready for combat. The Army is procuring a total of 824 Apaches to support a new force structure of 25 battalions with 24 Apaches for each unit (16 Active; two Reserve; seven National Guard) under the Aviation Restructure Initiative. The Apache has been sold to Israel, Egypt, Saudi Arabia, the UAE, and Greece.
Description: The Boeing (McDonnell Douglas) (formerly Hughes) AH-64A Apache is the Army's primary attack helicopter. It is a quick-reacting, airborne weapon system that can fight close and deep to destroy, disrupt, or delay enemy forces. The Apache is designed to fight and survive during the day, night, and in adverse weather throughout the world. The principal mission of the Apache is the destruction of high-value targets with the HELLFIRE missile. It is also capable of employing a 30MM M230 chain gun and Hydra 70 (2.75 inch) rockets that are lethal against a wide variety of targets. The Apache has a full range of aircraft survivability equipment and has the ability to withstand hits from rounds up to 23MM in critical areas.
The AH-64 Apache is a twin-engine, four bladed, multi-mission attack helicopter designed as a highly stable aerial weapons-delivery platform. It is designed to fight and survive during the day, night, and in adverse weather throughout the world. With a tandem-seated crew consisting of the pilot, located in the rear cockpit position and the co-pilot gunner (CPG), located in the front position, the Apache is self-deployable, highly survivable and delivers a lethal array of battlefield armaments. The Apache features a Target Acquisition Designation Sight (TADS) and a Pilot Night Vision Sensor (PNVS) which enables the crew to navigate and conduct precision attacks in day, night and adverse weather conditions. The Apache can carry up to 16 Hellfire laser designated missiles. With a range of over 8000 meters, the Hellfire is used primarily for the destruction of tanks, armored vehicles and other hard material targets. The Apache can also deliver 76, 2.75" folding fin aerial rockets for use against enemy personnel, light armor vehicles and other soft-skinned targets. Rounding out the Apache?s deadly punch are 1,200 rounds of ammunition for its Area Weapons System (AWS), 30MM Automatic Gun.
Powered by two General Electric gas turbine engines rated at 1890 shaft horsepower each, the Apache?s maximum gross weight is 17,650 pounds which allows for a cruise airspeed of 145 miles per hour and a flight endurance of over three hours. The AH-64 can be configured with an external 230-gallon fuel tank to extend its range on attack missions, or it can be configured with up to four 230-gallon fuel tanks for ferrying/self-deployment missions. The combat radius of the AH-64 is approximately 150 kilometers. The combat radius with one external 230-gallon fuel tank installed is approximately 300 kilometers [radii are temperature, PA, fuel burn rate and airspeed dependent]. The AH-64 is air transportable in the C-5, C-141 and C-17.
An on-board video recorder has the capability of recording up to 72 minutes of either the pilot or CPG selected video. It is an invaluable tool for damage assessment and reconnaissance. The Apache's navigation equipment consists of a doppler navigation system, and most aircraft are equipped with a GPS receiver.
The Apache has state-of-the-art optics that provide the capability to select from three different target acquisition sensors. These sensors are
- Day TV. Views images during day and low light levels, black and white.
- TADS FLIR. Views thermal images, real world and magnified, during day, night and adverse weather.
- DVO. Views real world, full color, and magnified images during daylight and dusk conditions.
The Apache has four articulating weapons pylons, two on either side of the aircraft, on which weapons or external fuel tanks can be mounted. The aircraft has a LRF/D. This is used to designate for the Hellfire missile system as well as provide range to target information for the fire control computer's calculations of ballistic solutions.
Threat identification through the FLIR system is extremely difficult. Although the AH-64 crew can easily find the heat signature of a vehicle, it may not be able to determine friend or foe. Forward looking infrared detects the difference in the emission of heat in objects. On a hot day, the ground may reflect or emit more heat than the suspected target. In this case, the environment will be "hot" and the target will be "cool." As the air cools at night, the target may lose or emit heat at a lower rate than the surrounding environment. At some point the emission of heat from both the target and the surrounding environment may be equal. This is IR crossover and makes target acquisition/detection difficult to impossible. IR crossover occurs most often when the environment is wet. This is because the water in the air creates a buffer in the emissivity of objects. This limitation is present in all systems that use FLIR for target acquisition.
Low cloud ceilings may not allow the Hellfire seeker enough time to lock onto its target or may cause it to break lock after acquisition. At extended ranges, the pilot may have to consider the ceiling to allow time for the seeker to steer the weapon onto the target. Pilot night vision sensor cannot detect wires or other small obstacles.
Overwater operations severely degrade navigation systems not upgraded with embedded GPS. Although fully capable of operating in marginal weather, attack helicopter capabilities are seriously degraded in conditions below a 500-foot ceiling and visibility less than 3 km. Because of the Hellfire missile's trajectory, ceilings below 500 feet require the attack aircraft to get too close to the intended target to avoid missile loss. Below 3 km visibility, the attack aircraft is vulnerable to enemy ADA systems. Some obscurants can prevent the laser energy from reaching the target; they can also hide the target from the incoming munitions seeker. Dust, haze, rain, snow and other particulate matter may limit visibility and affect sensors. The Hellfire remote designating crew may offset a maximum of 60 degrees from the gun to target line and must not position their aircraft within a +30-degree safety fan from the firing aircraft.
The Apache fully exploits the vertical dimension of the battlefield. Aggressive terrain flight techniques allow the commander to rapidly place the ATKHB at the decisive place at the optimum time. Typically, the area of operations for Apache is the entire corps or divisional sector. Attack helicopters move across the battlefield at speeds in excess of 3 kilometers per minute. Typical planning airspeeds are 100 to 120 knots during daylight and 80 to 100 knots at night. Speeds during marginal weather are reduced commensurate with prevailing conditions. The Apache can attack targets up to 150 km across the FLOT. If greater depth is required, the addition of ERFS tanks can further extend the AH-64's range with a corresponding reduction in Hellfire missile carrying capacity (four fewer Hellfire missiles for each ERFS tank installed).
The Russian-developed Mi-24 HIND is the Apache's closest couterpart. The Russians have deployed significant numbers of HINDs in Europe and have exported the HIND to many third world countries. The Russians have also developed the KA-50 HOKUM as their next generation attack helicopter. The Italian A-129 Mangusta is the nearest NATO counterpart to the Apache. The Germans and French are co-developing the PAH-2 Tiger attack helicopter, which has many of the capabilities of the Apache.
The AH-64A: The AH-64 fleet consists of two aircraft models, the AH-64A and the newer Longbow Apache (LBA), AH-64D. AH-64A model full-scale production began in 1983 and now over 800 aircraft have been delivered to the U.S. Army and other NATO Allies. The U.S. Army plans to remanufacture its entire AH-64A Apache fleet to the AH-64D configuration over the next decade. The AH-64A fleet exceeded one million flight hours in 1997, and the median age of today's fleet is 9 years and 1,300 flight hours.
The AH-64A proved its capabilities in action during both Operation Restore Hope and Operation Desert Storm. Apache helicopters played a key role in the 1989 action in Panama, where much of its activity was at night, when the AH-64's advanced sensors and sighting systems were effective against Panamanian government forces.
Apache helicopters also played a major role in the liberation of Kuwait. On 20 November 1990, the 11th Aviation Brigade was alerted for deployment to Southwest Asia from Storck Barracks in Illesheim Germany. The first elements arrived in theater 24 November 1990. By 15 January 1991 the unit had moved 147 helicopters, 325 vehicles and 1,476 soldiers to the region. The Apache helicopters of the Brigade destroyed more than 245 enemy vehicles with no losses.
During Operation Desert Storm, AH-64s were credited with destroying more than 500 tanks plus hundreds of additional armored personnel carriers, trucks and other vehicles. They also were used to destroy vital early warning radar sites, an action that opened the U.N. coalition's battle plan. Apaches also demonstrated the ability to perform when called upon, logging thousands of combat hours at readiness rates in excess of 85 percent during the Gulf War.
While recovery was ongoing, additional elements of the 11th Aviation Brigade began the next chapter of involvement in the region. On 24 April 1991 the 6th Squadron, 6th Cavalry?s 18 AH-64 helicopters began a self-deployment to Southwest Asia. The Squadron provided aerial security to a 3,000 square kilometer region in Northern Iraq as part of the Combined Task Force of Operation Provide Comfort.
And the AH-64A Apache helped to keep the peace in Bosnia. April of 1996 saw the beginning of the 11th Regiment?s involvement in Bosnia-Herzegovina. Elements of 6-6 Cavalry served as a part of Task Force Eagle under 1st Armored Division for 7 months. In October of 1996, Task Force 11, consisting of the Regimental Headquarters, 2-6 Cavalry, 2-1 Aviation and 7-159 Aviation (AVIM) deployed to Bosnia-Herzegovina in support of Operation Joint Endeavor/Operation Joint Guard for eight months. In June of 1998 the Regimental Headquarters, 6-6 Cav and elements of 5-158 Aviation were again deployed to Bosnia-Herzegovina in support of Operations Joint Guard and Joint Forge for 5 months. The AH-64A?s advanced sensors and sighting systems proved effective in removing the cover of darkness from anti-government forces.
Army National Guard units in North and South Carolina, Florida, Texas, Arizona, Utah and Idaho also fly Apache helicopters. The Army has fielded combat-ready AH-64A units in the United States, West Germany and in Korea, where they play a major role in achieving the US Army's security missions.
By late 1996, McDonnell Douglas Helicopters delivered 937 AH-64A Apaches -- 821 to the U.S. Army and 116 to international customers, including Egypt, Greece, Israel, Saudi Arabia and the United Arab Emirates.
The Apache is clearly one of the most dynamic and important programs in aviation and the Army, but it is not without limitations. Due to the possibility of surging the engines, pilots have been instructed not to fire rockets from in-board stations. According to current doctrine, they are to fire no more than pairs with two outboard launchers every three seconds, or fire with only one outboard launcher installed without restrictions (ripples permitted). These are the only conditions permitted. Other firing conditions will be required to be approved via a System Safety Risk Assessment (SSRA).
The improvement of aircraft systems troubleshooting is a high priority issue for O&S Cost reduction. Because of funding cuts, the level of contractor support to the field has been reduced. This results in higher costs in no fault found removals, maintenance man hours, and aircraft down time. The Apache PM, US Army Aviation Logistics School, and Boeing are currently undertaking several initiatives. Upgrading and improving the soldier's ability to quickly and accurately fault isolate the Apache weapons system is and will continue to be an O&S priority until all issues are resolved.
Prime Vendor Support (PVS) for the entire fleet of AH-64s is a pilot program for the Army, and may become a pilot program for the Department of Defense. PVS will place virtually all of Apache's wholesale logistic responsibility under a single contract. The Apache flying hour program will provide upfront funding for spares, repairables, contractor technical experts, and reliability improvements. Starting at the flight line there will be contractor expert technicians with advanced troubleshooting capability assigned to each Apache Battalion. At the highest level, PVS represents a single contractor focal point for spares and repairs. The intent is to break the current budget and requirements cycle that has Apache at 67% supply availability with several thousand lines at zero balance.
Modernization Through Spares (MTS) is a spares/component improvement strategy applied throughout the acquisition life cycle and is based on technology insertion to enhance systems and extend useful life while reducing costs. The MTS initiative seeks to leverage current procurement funds and modernize individual system spares thereby incrementally improving these systems. MTS is accomplished via the "spares" acquisition process. MTS, a subset of acquisition reform, seeks to improve an end item's spare components. The emphasis is on form, fit and function, allowing a supplier greater design and manufacturing flexibility to exploit technology used in the commercial marketplace.
Apache MTS focuses on the insertion of the latest technology into the design and manufacture of select spares. This is to be accomplished without government research and development (R&D) funds, but rather, uses industry investment. Industry, in turn, recoups this investment through the sale of improved hardware via long term contracts.
Modernization efforts continue to improve the performance envelope of the AH-64A while reducing the cost of ownership. Major modernization efforts within the AH-64A fleet are funded and on schedule. GG Rotor modifications were finished in April 1998,, and future improvements such as a Second Generation FLIR, a High Frequency Non-Line of Sight NOE radio, and an internal fully crashworthy auxiliary fuel tank are all on the verge of becoming a reality for the Apache.
The Aviation Mission Planning System (AMPS) and the Data Transfer Cartridge (DTC) are tools for the Embedded Global Positioning Inertial Navigation Unit (EGI) equipped AH-64A aircraft that allow aircrews to plan missions and download the information to a DTC installed in the Data Transfer Receptacle (DTR). This saves the pilots a lot of "fat fingering" and eliminates the worry of everyone being on the same "sheet of music". Other features of the DTC include; saving waypoints and targets and troubleshooting. The EGI program is a Tri-service program with the Army, Air Force and Navy.
??General Characteristics, AH-64 Apache
Manufacturers:
Boeing McDonnell Douglas Helicopter Systems (Mesa, AZ)
General Electric (Lynn, MA)
Martin Marietta (Orlando, FL)
Power Plant:
Two T700-GE-701Cs
Length:
58.17 feet (17.73 meters)
Height:
15.24 feet (4.64 meters)
Wingspan:
17.15 feet (5.227 meters)
Weight:
11,800 pounds empty
15,075 pounds (6838 kilograms) loaded
Maximum Speed:
153 knots (284 kph)
Range:
1,900 kilometers
Crew:
Two: pilot and copilot/gunner
Armament:
M230 33mm gun
70mm (2.75 inch) Hydra-70 folding-fin aerial rockets
AGM-114 Hellfire anti-tank missiles
AGM-122 Sidearm anti-radar missile
AIM-9 Sidewinder air-to-air missiles
Introduction Date:
1986
|
|

David
Thu January 16, 2003 10:39am
|
RAH-66 Comanche
Function: Fire support and security for forward and rear area forces, point target/anti-armor, anti-helicopter, armed escort, supporting arms control and coordination, point and limited area air defense from enemy fixed-wing aircraft, armed and visual reconnaissance.
Description: The Boeing-Sikorsky RAH-66 Comanche is the Army's next generation armed reconnaissance helicopter. It also is the first helicopter developed specifically for this role. The Comanche will provide Army Aviation the opportunity to move into the 21st century with a weapon system of unsurpassed warfighting capabilities crucial to the Army's future strategic vision. The Comanche is intended to replace the current fleet of AH-1 and OH-58 helicopters in all air cavalry troops and light division attack helicopter battalions, and supplement the AH-64 Apache in heavy division/corps attack helicopter battalions.
The first Boeing-Sikorsky RAH-66 Comanche prototype was rolled-out at Sikorsky Aircraft, Stratford, Connecticut, May 25, 1995. The prototype's first flight was made on 04 January 1996. The second prototype is scheduled to fly in late March 1999. Six early operational capability aircraft are scheduled to be delivered 2002 to participate in an Army field exercise in 2002-2003, or possibly later in "Corps 04." The Comanche is powered by two Light Helicopter Turbine Engine Co. (LHTEC) T800-801 engines. These advanced engines and a streamlined airframe will be enable the Comanche to fly significantly faster than the larger AH-64 Apache.
The RAH-66 Comanche helicopter's primary role will be to seek out enemy forces and designate targets for the AH-64 Apache Attack helicopter at night, in adverse weather, and in battlefield obscurants, using advanced infrared sensors. The helmet has FLIR images and overlaid symbology that can be used as a headup display in nape-of-the-earth (NOE) flight.
The aircraft has been designed to emit a low-radar signature (stealth features). The Comanche will perform the attack mission itself for the Army's light divisions. The RAH-66 will be used as a scout and attack helicopter to include an air-to-ground and air-to-air combat capability. The Comanche is slated to replace the AH-1 Series Cobra light attack helicopter, the OH-6A Cayuse, and the OH-58A/OH-58C Kiowa light observation helicopters.
The Comanche mission equipment package consists of a turret-mounted cannon, night-vision pilotage system, helmet-mounted display, electro-optical target acquisition and designation system, aided target recognition, and integrated communication/navigation/identification avionics system. Targeting includes a second generation forward-looking infrared (FLIR) sensor, a low-light-level television, a laser range finder and designator, and the Apache Longbow millimeter wave radar system. Digital sensors, computers and software will enable the aircraft to track and recognize advesarys long before they are aware of the Comanche's presence, a key advantage in both the reconnaissance and attack roles.
Aided target detection and classification software will automatically scan the battlefield, identifying and prioritizing targets. The target acquisition and communications system will allow burst transmissions of data to other aircraft and command and control systems. Digital communications links will enable the crew unparalleled situational awareness, making the Comanche an integral component of the digital battlefield. The armament subsystems consist of the XM301 20mm cannon, and up to 14 Hellfire anti-tank missiles, 28 Air-to-Air Stinger (ATAS) anti-aircraft missiles, or 56 2.75 inch Hydra 70 air-to-ground rockets carried internally and externally. Up to four Hellfire and two Air-to-Air Stinger (ATAS) missiles can be stowed in fully-retractable weapons bays and the gun can be rotated to a stowed position when not in use. This design feature reduces both drag and radar signature.
Mission management, status, and control information is provided over the MIL-STD-1553B databus between the mission equipment packages and the Turreted Gun System. The Comanche will have enhanced maintainability through it's modular electronics architecture and built-in diagnostics.
Features:
Sensors and avionics. In the reconnaissance role, the Comanche will be equipped with a new generation of passive sensors and a fully integrated suite of displays and communications. Advance infrared (IR) sensors will have twice the range of OH-58D Kiowa Warrior and AH-64 Apache sensors. The Comanche will be equipped with the Apache Longbow fire control radar and the Helmet Integrated Display and Sight System (HIDSS). The fully integrated avionics system will allow tactical data to be overlaid onto a digital map, allowing the crew to devote more time for target detection and classification. A triple-redundant fly-by-wire system can automatically hold the helicopter in hover or in almost any other maneuver, reducing workload, allowing the pilot to concentrate on navigation and threat avoidance. A hand-on grip permits one-handed operation.
Stealth characteristics. The Comanche incorporates more low-observable stealth features than any aircraft in Army history. The Comanche radar cross-section (RCS) is less than that of a Hellfire missile. To reduce radar cross-section, weapons can be carried internally, the gun can be rotated aft and stowed within a fairing behind the turret when not in use, and the landing gear are fully-retractable. The all-composite fuselage sides are flat and canted and rounded surfaces are avoided by use of faceted turret and engine covers. The Comanche's head-on RCS is 360 times smaller than the AH-64 Apache, 250 times less than the smaller OH-58D Kiowa Warrior, and 32 times smaller than the OH-58D's mast-mounted sight. This means the Comanche will be able to approach five times closer to an enemy radar than an Apache, or four times closer than an OH-58D, without being detected.
Noise suppression. The Comanche only radiates one-half the rotor noise of current helicopters. Noise is reduced by use of a five-bladed rotor, pioneered by the successful Boeing (McDonnell Douglas) MD-500 Defender series of light utility helicopters. The fantail eliminates interaction between main rotor and tail rotor wakes. The advanced rotor design permits operation at low speed, allowing the Comanche to sneak 40% closer to a target than an Apache, without being detected by an acoustical system.
Infrared (IR) suppression. The Comanche only radiates 25% of the engine heat of current helicopters, a critical survivability design concern in a low-flying tactical scout helicopter. The Comanche is the first helicopter in which the infrared (IR) suppression system is integrated into the airframe. This innovative Sikorsky design feature provides IR suppressors that are built into the tail-boom, providing ample length for complete and efficient mixing of engine exhaust and cooling air flowing through inlets above the tail. The mixed exhaust is discharged through slots built into an inverted shelf on the sides of the tail-boom. The gases are cooled so thoroughly that a heat-seeking missile cannot find and lock-on to the Comanche.
Crew Protection. The Comanche features a crew compartment sealed for protection against chemical or biological threats, an airframe resilient against ballistic damage, enhanced crash-worthiness, and reduced susceptibility to electromagnetic interference.
Maintainability. Comanche will be easily sustained, will require fewer personnel and support equipment, and will provide a decisive battlefield capability in day, night and adverse weather operations. Comanche has been designed to be exceptionally maintainable and easily transportable. Through its keel-beam construction, numerous access panels, easily accessible line-replaceable units/modules and advanced diagnostics, the RAH-66 possesses "designed-in" maintainability. Comanche aircraft will be able to be rapidly loaded into or unloaded from any Air Force transport aircraft.
General Characteristics, RAH-66 Comanche
Manufacturer:
Boeing Sikorsky
Power Plant:
Two T800 1,440 SHP gas turbine engines
Thrust:
1,052 shaft horsepower
Length:
47.84 feet (14.58 feet)
Width:
7.58 feet (2.31 meters)
Height:
11 feet (3.35 meters)
Rotor Diameter:
39.04 feet (11.90 meters)
Weight:
9,300 pounds empty
Primary mission:
12,349 pounds w/o radar
12,784 pounds with radar
Speed:
172 knots (330 kph) dash speed
161 knots (310 kph) cruise speed
Range:
1,200 nautical miles w/o radar
860 nautical miles with radar
Crew:
Two
Armament:
Three-barrel 20 mm Gatling gun
Stinger, Starstreak or Mistral air-to-air missiles
TOW II, Hot II or Longbow Hellfire air-to-ground missiles
Sura D 81 mm, Snora 81 mm, or Hydra 70 rockets
Army Counter Air Weapon System
Date of First Flight:
1996
|
|

David
Thu January 16, 2003 10:59pm
|
M1 Abrams
Function: Main battle tank (MBT).
Description: The M1 has a very angular appearance, reflecting the modular nature of its armor components, with the turret mounted centrally on the hull. The M1 has a crew of four. The driver sits centered in the hull and forward of the turret, while the loader, gunner and tank commander occupy the turret, with the loader situated to the left of the main gun and the gunner and tank commander sitting in tandem on the right side. The driver's hatch has three periscope vision blocks which provide for forward vision. The center vision block may be removed and replaced with an AN/TVS-2 low-light periscope. The engine is mounted in the rear of the vehicle with the exhaust coming out from a louvered grill centrally mounted in the rear of the hull. The M1 utilizes a torsion bar suspension with seven pairs of cast aluminum road wheels and two return rollers. The drive sprocket is to the rear, an idler compensation wheel is located forward, and there is a gap between the first and second pair of road wheels. The M1 has armored skirts running the full length of the track. M1 track is made up of vulcanized rubber blocks (M156 variety) or removable rubber pads (M158.) The turret is also angular in appearance, with the main gun mounted in an exposed mantlet in the center of the turret face. The M68 rifled cannon is equipped with a metal thermal shroud, a bore gas evacuator located two-thirds of the way down on the barrel, and is equipped with a Muzzle Reference System collimator on the muzzle itself. The M240 coaxial (COAX) machine gun is located to the right of the main gun, with the flash tube extending through the main gun mantlet. The Gunner's Auxiliary Sight (GAS) aperture is located below the COAX flash tube on the right side of the main gun. The M1 has two turret access hatched, mounted side by side, in the middle of the turret roof. The loader's hatch, located on the left side, is equipped with a pintle mounted M240 7.62mm machine gun. The hatch itself is equipped with a single vision periscope on a rotating base. When not in use, the drivers AN/TVS-2 sight may be used in the loader's hatch vision block. The tank commander's hatch is ringed by vision periscopes and the Commander's Weapon Station cupola is equipped with an M2 HB caliber .50 machine gun. The M2 may be fired while the commander is "buttoned up" but the commander must be exposed to reload the weapon. The CWS can be reconfigured to fire an M240 as a replacement weapon. The Gunner's Primary Sight (GPS) is located forward of the commander's cupola. The GPS is housed in an armored box with hinged doors shielding the optics when not in use. The GPS is divided into two halves; a clear glass window for normal daylight viewing and an IR transparent Germanium coated window for the thermal imaging sight. The Laser Range Finder (LRF) is fired through the daylight window. There are individual sponson boxes located on either side of the turret for equipment storage. These boxes are approximately three feet (1m) long and are bracketed by a three-rail cargo rack which runs the length of the turret side. The smoke grenade launchers are located on either side of the turret, forward of the turret sponson boxes. There are mounting points for two radio antennae, one on either side of the turret rear, and the cross wind sensor is mounted upright in the center of the turret rear. A cargo bustle rack is mounted on the rear of the turret and runs the length of the turret rear (in early production M1s this rack was omitted and a fabric cargo net mounted in it's place. An Auxiliary Power Unit (APU) may be mounted in the turret bustle rack or on the rear of the hull.
History: Fielded in February 1980, the M1 General Abrams main battle tank revolutionized armored warfare. Incorporating an advanced shoot-on-the-move fire control system, a thermal imaging sight, a 1500 horsepower gas turbine engine and an advanced armor design similar to the Chobham armor developed in England, the M1 was the most lethal armored vehicle in the world. Conceived in 1971 as a replacement for the aging M60 tank, which was itself an extension of the 1050s era M 47/48 program, the M1 was going to be of a completely new design, establishing a new family of American main battle tanks. Providing the Abrams with a true shoot on the move capability, the fire control system automatically corrects for range, turret slew (motion) rate, crosswind, and tank axial tilt (cant). In addition, the gunner manually enters ammunition or weapon type, air and ammunition temperatures, barometric pressure, and gun tube wear, while range is instantly calculated by a Nd:YAG (Neodymium doped Yttrium Aluminum Garnet) near infrared laser rangefinder. Lastly, the gunner can compensate for gun tube deformation (caused either by heat generated from firing the cannon or atmospheric changes) through the use of a muzzle reference system, which allows for a rapid realignment of the cannon and the gunner's primary sight.
The Chobham armor built into the M1 represents a veritable leap in armor technology. Composed of layers of metal, ceramics, and spaces, this new armor is far superior to RHA (Rolled Homogeneous Armor) in defeating kinetic and chemical energy weapons. To increase crew safety and survivability, all of the M1's ammunition is stored in armored compartments which are designed vent dangerous gasses and fragments away from the crew in the event of an ammunition explosion. The crew and engine compartments are equipped with an automatic fire suppression system, utilizing numerous fire detection sensors and pressurized Halon gas, which can react to and suppress a compartment fire in less than 250 ms.
To survive on the NBC (Nuclear, Biological, Chemical) battlefield the M1 is also equipped with both an over pressurization and air sterilization system which will protect the crew from these hazards and allow them to continue combat operations without having to wear protective overgarments and masks while buttoned up inside the vehicle.
Lastly, the M1 was the first land combat vehicle to utilize a gas turbine multi fuel engine, which offers a higher power to weight ratio than any other contemporary tank power plant and gives the Abrams unparalleled tactical mobility and cross country speed. The M1 retains the M68 105mm rifled cannon used on the M60 series tanks, which was originally based on the British M7 105mm cannon design, and is capable of firing both rifled and fin stabilized ammunition. In addition, the M1 is equipped with two M240 7.62mm machine guns; one mounted coaxially with the main gun and fired by gunner, and the other mounted at the loader's station. The Commanders Weapon Station (CWS) is equipped with an M2 heavy barrel Caliber .50 machine gun. The CWS can be reconfigured to fire the M240 machine gun as a substitute.) The M1 is equipped with a pair of M250 red phosphorus smoke grenade launchers and is capable of generating smoke by injecting diesel fuel into the engine exhaust.
Originally designated the XM1, the first production model was designated the M1, of which 2,374 were built between 1982 and 1985. In 1984 the M1IP (Improved Product) was introduced, which was outwardly identical to the M1, but which incorporated a number of internal automotive, electronic and armor improvements. Production of the M1IP was halted at 84 tanks in 1986, when the Lima and Detroit tank plants were reconfigured to produce the up-gunned 120mm M1A1. In 1992 a study was conducted evaluating the feasibility of upgrading the Army's fleet of M1s to M1A2 SEP (Standard Equipment Package) standard and low rate production was approved in 1994. Since then the Army had agreed to convert 547 M1s to the M1A2 SEP standard.
|
|

David
Thu January 16, 2003 11:24pm
|
AGM-65 Maverick
Function: The AGM-65 Maverick is a tactical, air-to-surface guided missile designed for close air support, interdiction and defense suppression mission. It provides stand-off capability and high probability of strike against a wide range of tactical targets, including armor, air defenses, ships, transportation equipment and fuel storage facilities.
Description: The Maverick is a modular design weapon. A different combination of the guidance package and warhead can be attached to the rocket motor section to produce a different weapon. The Maverick has three different seekers and two different warheads. The solid-rocket motor propulsion section is common to all variants. The seeker options are electro-optical (EO) imaging, imaging infrared (IR) or a laser guidance package. The warhead is in the missile's center section. Either a 125-pound shaped-charge warhead or a 300-pound penetrator warhead can be used. A contact fuse in the nose fires the shaped-charge warhead. The penetrator uses a delayed-fuse, allowing the warhead to penetrate the target with its kinetic energy before firing. The latter is very effective against large, hard targets. The AGM-65 has a cylindrical body with long-chord delta wings and tail control surfaces mounted close to the trailing edge of the wing of the aircraft using it.
A-10, F-15E and F-16 aircraft carry Mavericks. As many as six Mavericks can be carried by an aircraft, usually in three round, underwing clusters, allowing the pilot to engage several targets on one mission. The missile also has "launch-and-leave" capability that enables a pilot to fire it and immediately take evasive action or attack another target as the missile guides itself to the target. Mavericks can be launched from high altitudes to tree-top level and can hit targets ranging from a distance of a few thousand feet to 13 nautical miles at medium altitude.
Maverick B models have an electro-optical television guidance system. After the protective dome cover is automatically removed from the nose of the missile and its video circuitry activated, the scene viewed by the guidance system appears on a cockpit television screen. The pilot selects the target, centers cross hairs on it, locks on, then launches the missile. The Maverick B also has a screen magnification capability that enables the pilot to identify and lock on smaller and more distant targets.
The Maverick D has an imaging infrared guidance system, operated much like that of the A and B models, except that infrared video overcomes the daylight-only, adverse weather limitations of the other system. The infrared Maverick D can track heat generated by a target and provide the pilot a pictorial display of the target during darkness and hazy or inclement weather.
The Maverick E model is the only version having the laser-guided seeker section. It uses the heavyweight penetrator warhead. The U.S. Marine Corps are the only users of this variant.
The Maverick F is a naval variant of the D/G model (IR) currently in use by the U.S. Navy. It also uses the 300-pound penetrator warhead.
The Maverick G model essentially has the same guidance system as the D, with some software modifications that track larger targets. The G model's major difference is its heavyweight penetrator warhead, while Maverick B and D models employ the shaped-charge warhead.
Maverick K models are currently in development. They were developed by taking a G model and replacing the IR guidance system with an electro-optical (EO) television guidance system.
History: The Air Force accepted the first AGM-65A Maverick in August 1972. A total of 25,750 A and B Mavericks were purchased by the Air Force. Maverick As have recently been phased out of the inventory.
The Air Force is exploring the possibility of converting phased out A's and near obsolete B's and making an EO version to be named AGM-65H. The software in the H would be upgraded increasing its capability. The Air Force took delivery of the first AGM-65D in October 1983, with initial operational capability in February 1986. Delivery of operational AGM-65G missiles took place in 1989.
More than 5,000 AGM-65 A/B/D/E/F/G's were employed during Operation Desert Storm, mainly attacking armored targets. Mavericks played a large part in the destruction of Iraq's significant military force.
General Characteristics, AGM-65 Maverick
Contractors:
Raytheon Systems Corporation
Power Plant:
Thiokol TX-481 solid-propellant rocket motor
Launch Weight:
AGM-65B, 462 pounds (207.90 kilograms)
AGM-65D, 485 pounds (218.25 kilograms)
AGM-65E, 777 pounds (353.2 kilograms)
AGM-65F, 804 pounds (365.5 kilograms)
AGM-65G, 670 pounds (301.50 kilograms)
AGM-65K, 793 pounds (360.45 kilograms)
Diameter:
1 foot (30.48 centimeters)
Wingspan:
2 feet, 4 inches (71.12 centimeters)
Range:
Classified
Speed:
Classified
Aircraft:
Used aboard A-10, F-15E and F-16
Warhead:
AGM-65B/D: 125 pounds (56.25 kilograms), cone shaped
AGM-65E/F/G/K: 300 pounds (135 kilograms) delayed-fuse penetrator, heavyweight
Guidance System:
AGM-65B/K: electro-optical television
AGM-65D/F/G: imaging infrared
AGM-65E: laser guided
Inventory:
Classified
Date Deployed:
August 1972
Unit Cost:
$17,000 to $110,000 depending on the Maverick variant
|
|

David
Thu January 16, 2003 11:24pm
|
AIM-9 Sidewinder
Function: The AIM-9 Sidewinder is a supersonic, heat-seeking, air-to-air missile carried by fighter aircraft. It has a high-explosive warhead and an active infrared guidance system. The Sidewinder was developed by the U.S. Navy for fleet air defense and was adapted by the U.S. Air Force for fighter aircraft use. Early versions of the missile were extensively used in the Southeast Asia conflict.
Description: The AIM-9 has a cylindrical body with a roll-stabilizing rear wing/rolleron assembly. Also, it has detachable, double-delta control surfaces behind the nose that improve the missile's maneuverability. Both rollerons and control surfaces are in a cross-like arrangement.
The missile's main components are an infrared homing guidance section, an active optical target detector, a high-explosive warhead and a rocket motor.
The infrared guidance head enables the missile to home in on target aircraft engine exhaust. An infrared unit costs less than other types of guidance systems, and can be used in day/night and electronic countermeasures conditions. The infrared seeker also permits the pilot to launch the missile, then leave the area or take evasive action while the missile guides itself to the target.
History: The AIM-9A, a prototype of the Sidewinder, was first fired successfully in September 1953. The initial production version, designated AIM-9B, entered the Air Force inventory in 1956 and was effective only at close range. It could not engage targets close to the ground, nor did it have nighttime or head-on attack capability. These shortcomings were eliminated on subsequent versions.
The AIM-9J, a conversion of the AIM-B and E models, has maneuvering capability for dogfighting, and greater speed and range, giving it greater enhanced aerial combat capability. Deliveries began in 1977 to equip the F-15 and other Sidewinder-compatible aircraft.
The AIM-9L added a more powerful solid-propellant rocket motor as well as tracking maneuvering ability. An improved active optical fuse increased the missile's lethality and resistance to electronic countermeasures. A conical scan seeker increased seeker sensitivity and improved tracking stability. The L model was the first Sidewinder with the ability to attack from all angles, including head-on. Production and delivery of the AIM-9L began in 1976.
The AIM-9P, an improved version of the J model, has greater engagement boundaries, enabling it to be launched farther from the target. The more maneuverable P model also incorporated improved solid-state electronics that increased reliability and maintainability. Deliveries began in 1978.
The AIM-9P-1 has an active optical target detector instead of the infrared influence fuse; the AIM-9P-2 added a reduced-smoke motor. The most recently developed version, the AIM-9P-3, combined both the active optical target detector and the reduced-smoke motor. It also has added mechanical strengthening to the warhead as well as the guidance and control section. The improved warhead uses new explosive material that is less sensitive to high temperature and has a longer shelf life.
The AIM-9M, currently the only operational variant, has the all-aspect capability of the L model, but provides all-around higher performance. The M model has improved defense against infrared countermeasures, enhanced background discrimination capability, and a reduced-smoke rocket motor. These modifications increase ability to locate and lock-on a target and decrease the missile's chances for detection. Deliveries of the M model began in 1983.
The AIM-9M-9 has expanded infrared countermeasures detection circuitry. AIM-9X is a future variant currently under development.
General Characteristics, AIM-9 Sidewinder
Contractors:
Raytheon and Loral Martin
Power Plant:
Hercules and Bermite Mk 36 Mod 11
Thrust:
Classified
Length:
9 feet, 5 inches (2.87 meters)
Launch Weight:
190 pounds (85.5 kilograms)
Diameter:
5 inches (0.13 meters)
Finspan:
2 feet, 3/4 inches (0.63 meters)
Warhead:
Annular blast fragmentation
Guidance System:
Solid-state, infrared homing system
Inventory:
Classified
Introduction Date:
1956
Unit Cost:
Approximately $84,000
|
|

David
Thu January 16, 2003 11:48pm
|
M93 Hornet
Description: The M93 Hornet is an anti-tank off-route munition made of lightweight material (35 pounds) that one person can carry and employ. The Hornet is a non-recoverable munition that is capable of acquiring targets by using sound and motion detection methods. It will automatically search, detect, recognize, and engage moving targets by using top attack at a standoff distance up to 100 meters from deployment site. It is employed by combat engineers, rangers, and SOF.
The RCU is a hand-held encoding unit that interfaces with the Hornet when the remote mode is selected at the time of employment. After encoding, the RCU can be used to arm the Hornet, reset its self-destruct (SD) times, or destroy it. The maximum operating distance for the RCU is 2 kilometers.
High winds, heavy rain, snow, ice, extreme cold, and extreme heat reduce the Hornet's ability to detect targets at maximum range. Radio-frequency (RF) jamming devices (such as the hand-emplaced, expandable jammer [HEXJAM]), limit the Hornet's communication capabilities if they are placed in the munition field, but they will not affect the Hornet's ability to engage targets and will not damage the system. RF jamming devices will also affect the remote arming of current Hornet systems.
The Hornet's active battery pack is inserted during pre-arming and has an estimated life of four hours. The active battery pack powers the munition from the time it is inserted until the end of the safe-separation time, when the built-in reserve battery is activated. To prevent munitions from becoming duds, do not pre-arm them too early. Allow adequate time for traveling to the obstacle site, emplacing mines, throwing arming switches, and expiration of safe-separation times.
Once the Hornet is armed and the self-test is performed, the munition will remain active until its SD time expires or until it is encountered. The SD time (4 hours, 48 hours, 5 days, 15 days, or 30 days) is determined by the user. The munition will self-detonate after the SD time has expired.
Hornet munitions have an employed life of 60 days in the pre-armed mode (remote arming) and 30 days in the armed mode. If the temperature exceeds 100?F, the employed life drops to 15 days in the pre-armed mode and 30 days in the armed mode.
|
|

David
Fri January 17, 2003 6:37pm
|
Raptor 4001 shows its cla
Raptor 4001 shows its claws during a recent side-weapons-bay-doors-open test at Edwards Air Force Base, Calif. The F-22 is designed to carry two AIM-9 Sidewinder short-range, heat-seeking air-to-air missiles in its side weapons bays. The F-22 flight test program is scheduled to launch a Sidewinder from a Raptor for the first time later this year.
|
|

David
Sat January 18, 2003 1:02pm
|
Airman 1st Class Heather
Airman 1st Class Heather Schaefer (right) of Granite City, Ill., and Airman 1st Class Angel L. Daly of Concord, Calif., both members of the 86th Services Squadron, Ramstein Air Base, Germany, serve the first hot breakfast to U.S. troops deployed to Tirana, Albania, on Tuesday, April 20, 1999. The airmen are deployed to Tirana in support of Operation Sustain Hope.
|
|

David
Tue February 11, 2003 1:14pm
|
Defense Support Program S
Function: Primary mission: Strategic and tactical missile launch detection.
Description: Air Force Space Command-operated Defense Support Program (DSP) satellites are a key part of North America's early warning systems. In their 22,000 miles-plus geosynchronous orbits, DSP satellites help protect the United States and its allies by detecting missile launches, space launches and nuclear detonations.
DSP satellites use an infrared sensor to detect heat from missile and booster plumes against the earth's background. In 1995, a new means of processing DSP data called Attack and Launch Early Reporting to Theater (ALERT) was brought on line. This capability provides improved warning of attack by short-range missiles against U.S. and allied forces overseas.
Numerous improvement projects have enabled DSP to provide accurate, reliable data in the face of evolving missile threats. On-station sensor reliability has provided uninterrupted service well past their design lifetime. Recent technological improvements include enhanced sensor resolution, increased on-board signal-processing capability to improve clutter rejection, and enhanced reliability and survivability improvements. In the 21st century, the Space-Based Infrared System (SBIRS) will replace DSP.
The 21st Space Wing, located at Peterson Air Force Base, Colo., has units that operate DSP satellites and report warning information, via communications links, to the North American Aerospace Defense Command and U.S. Space Command early warning centers within Cheyenne Mountain, located near Colorado Springs, Colo. These centers immediately forward data to various agencies and areas of operations around the world.
The 50th Space Wing at Schriever AFB, Colo., provides command and control support for the satellites.
The Defense Support Program is managed by Space and Missile Systems Center (Air Force Materiel Command), Space Based Infrared System Program office at Los Angeles AFB, Calif. The office is responsible for development and acquisition of the satellites.
Typically, DSP satellites are launched into geosynchronous orbit on a Titan IV booster and inertial upper stage combination. However, one DSP satellite was launched using the space shuttle on mission STS-44 (Nov. 24, 1991).
History: The program came to life with the first launch of a DSP satellite in the early 1970s. Since that time, DSP satellites have provided an uninterrupted early warning capability. The original DSP weighed 2,000 pounds and had 400 watts of power, 2,000 detectors and a design life of 1.25 years. In the 1970s, the satellite was upgraded to meet new mission requirements. As a result, the weight grew to 5,250 pounds, the power to 1,275 watts, the number of detectors increased by threefold to 6,000 and the design life was three years with a goal of five years.
DSP's effectiveness was proven during Desert Storm, when DSP detected the launch of Iraqi Scud missiles and provided warning to civilian populations and coalition forces in Israel and Saudi Arabia.
?General Characteristics, Defense Support Program Satellites
Contractor Team:
Thompson Ramo Woolridge (TRW) and Aerojet Electronics Systems
Power Plant:
Solar arrays generate 1,485 watts
Weight:
5,250 pounds (2,386 kilograms)
Height:
32.8 feet (10 meters) on orbit
28 feet (8.5 meters) at launch
Diameter:
22 feet (6.7 meters) on orbit
13.7 feet (4.2 meters) at launch
Design Life:
Block II/IIA: 7.5 years
Block IIR: 10 years
Orbit Altitude:
22,000 miles (35,200 kilometers)
Date Deployed:
1970
Latest Satellite Block:
Sat 23
Inventory:
Classified
Unit Replacement Cost:
$400 million
|
|

David
Fri March 21, 2003 6:21am
|
Joint Service Lightweight
The Joint Service Lightweight Integrated Suit Technology or JSLIST consists of a two piece garment designed to replace the Navy's existing Chemical Protection Overgarment (CPO). The JSLIST garment offers a number of advantages over the Navy' s current CPO. The JSLIST garment features state-of-the-art chemical protective lining technology which provides increased chemical protection while allowing more mobility for the wearer, and can be laundered up to three times. The CPO suit contains a charcoal impregnated lining. During wear, this lining is leached onto the wearer causing inner garments to become coated with charcoal dust. The CPO suit would disintegrate if laundered.
In 1993 the U.S. Marine Corps Systems Command, the U.S. Army Aviation and Troop Command, the U.S. Naval Sea Systems Command and the U.S. Air Force Material Command signed a Memorandum of Agreement establishing the JSLIST Program. The program combined development and testing efforts resulting in the procurement of a single U.S. military CBR Garment at a significantly reduced cost.
The U.S. Army Natick Soldier Systems Center is participating in the management, design and development of the next generation chemical/biological protective clothing system. Key requirements of the JSLIST program included protection against chemical/biological agents, a lighter weight, more flexible garment, and the ability to be laundered. Key requirements of the footwear include combined environmental and CB protection, POL resistance, and self flame extinguishing characteristics. In addition, the system is required to be durable, designed to take into account the human factors of (and acceptability to) the user, and reduce the heat stress associated with protective gear.
JSLIST consolidates service programs to develop next generation chemical/biological protective clothing systems into common goal objectives: obtain the best suit possible at the least cost; minimize types of suits in service; maximize economies of scale; and conserve service resources. JSLIST created an avenue for new, potential candidate chemical protective material technologies/prototype ensembles to be evaluated for technical merit and performance. This process screened potential technologies for inclusion into future advanced development programs.
Description:
Components include an Overgarment to be worn over the Battle Dress Uniform (BDU), and the Multipurpose Rain / Snow / CB Overboot (MULO). These items allow complete MOPP and heat stress management flexibility while tailoring the protection levels relative to mission scenarios and threat. Procurement of these items began in FY97.
The JSLIST program developed and is fielding the JSLIST Overgarment and is manufacturing Multi-purpose Overboots (MULO). The JSLIST Overgarment and the Multipurpose Overboot (MULO) were adopted by all four services. These items, when combined with standard CB protective butyl gloves and masks for respiratory protection, allow complete MOPP flexibility. The Joint Firefighter Integrated Response Ensemble (J-FIRE) will also utilize the JSLIST overgarment.
The JSLIST overgarment is designed to replace the Battle Dress Overgarment, the USMC Saratoga, and the Navy Chemical Protective Overgarment. It is lighter and less bulky than the previous Battle Dress Overgarment (BDO) chemical protective garments, is durable for 45 days, can be laundered up to six times and provides 24 hours of protection against liquid and vapor chemical challenges. The overgarment consists of a coat and trousers. The trousers have bellows-type pockets, high-waist, adjustable suspenders, and adjustable waistband. The trousers also have a slide fastener front opening with protective flap and a bellows pocket with flap located on each thigh. Each leg opening has two hook and loop ankle adjustment tabs. The waist-length coat has an integral hood, a slide fastener front concealed by a flap with hook and loop closure, enclosed extendable elasticized drawcord hem with jacket retention cord, full-length sleeves with hoop and loop wrist closure adjustment tabs, and an outside bellows pocket with flap on the left sleeve. The outer shell of both pieces is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back. Garments are being procured in 4-color Woodland Camouflage or 3-color Desert Camouflage patterns.
Component Materials: The outer shell is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back.
Color: The outer layer is a 40 color Woodland Camouflage pattern or a 3-color Desert Camouflage pattern.
Weight: 2.63 kg (5.8 lbs) per overgarment (Med/Reg)
Size: Coat, 7 sizes, Small/X-Short through Large/Long; Trousers, 7 sizes, Small/X-Short through Large/Long
Basis of Issue: The overgarment will be issued to troops requiring chemical protection.
Price: Coat, Med/Reg $91.80; Trousers, Med/Reg $91.80
NSN: Coat, Med/Reg 8415-01-444-2310; Trousers, Med/Reg 8415-01-444-1238
The JSLIST suit has a five-year shelf life, with an estimated total life of 15 years. Once a production lot of suits has reached five years of age, samples from that lot are visually inspected and chemical agent tested to determine whether the shelf life of that lot should be extended an additional five years with sound confidence of quality / durability. Once the suit reaches ten years of service life it is chemical tested, inspected, and if qualified, is extended annually thereafter. Equipment Assessment Program personnel will perform the visual inspection. The chemical testing will be performed by the Battelle Memorial Institute. Inspection and testing of the JSLIST suits will begin in FY02 (first five year period) for shelf life extension. Representative samples from FY97 production lots will be inspected at that time.
JSLIST suits in packages with some loss of vacuum, but no clearly visible holes or tears, are considered fully mission-capable. If a bag is opened or accidentally torn, and has not been exposed to any petroleum, oil, or lubricant (POL) products or possible contaminants and not damaged in any way, it can be immediately re-packaged or carefully repaired with high quality adhesive tape, "duct tape", or some similar product to re-create the seal, and it will maintain its original shelf life. Repair procedures to the inner bag should not obliterate surveillance data. If a package is visibly torn or punctured with no determination as to when it was damaged or to what contaminants the suit was exposed, the suit should be used for training only. The words training only must be stenciled 2.5 inches high or larger on the outside of a sleeve or leg of the item, in a contrasting colored permanent ink.
The Multi-purpose Overboots (MULO) will replace the black vinyl overboot/ green vinyl overboot (BVO/GVO). The MULO is a 60 day boot that provides 24 hours of chemical protection. The boot has increased traction, improved durability, petroleum, oil, and lubricant (POL) and flame resistance, and better chemical protection than the BVO/GVO.
The focus of Joint Service Lightweight Integrated Suit Technology Pre-Planned Product Improvement (JSLIST P3I) is to leverage Industry for mature fabric technologies for use in garments. The existing JSLIST design will be used as the baseline, with minimum modification as necessary for improvement. Mature fabric technologies and designs for gloves and socks will be sought as well to address the glove and sock requirements that were not met in JSLIST.
A market survey was conducted in FY97. Materials received from responding forms were evaluated, and material screening was scheduled to be completed in 4FQ98. Field evaluation was projected to start 1QFY99, and technology insertion in 1QFY00.
The JSLIST P3I is a follow-on to the existing JSLIST program which developed a joint service chemical protective ensemble. It will address the JSLIST objectives (i.e. desired) requirements and those that were not met. This joint program will include full participation by the US Air Force, Army, Marine Corps, and Navy.
The JSLIST Block 1 Glove Upgrade (JB1GU) Program is seeking an interim glove to replace the current butyl rubber glove. The follow on to the JB1GU will be the JB2GU program that will be produce gloves for both ground and aviation units. The Joint Protective Aircrew Ensemble (JPACE) will be developed to provide aviators with the same advantages and improved protection as JSLIST provides to other warfighters. Similarly, clothing systems for Explosive Ordnance Disposal (EOD) personnel and firefighters are required to enhance existing chemical protection systems.
In an attempt to encourage competition and lower costs, the Joint Service Lightweight Integrated Suit Technology (JSLIST) program solicited in 4QFY00 for JSLIST overgarments in alternate materials, but having the exact same design as the original JSLIST. The purpose of the JSLIST Additional Source Qualification (JASQ) program is to qualify additional manufacturers to provide JSLIST overgarments. Manufacturers could also submit Industry Initiated Demonstration Products (IIDP) in alternate materials that might require a different design. These though will be evaluated for potential use in future garments and can not be qualified for use as a substitute JSLIST overgarment. After release of Request for Proposal in FY00, four candidate materials and two IIDP candidates were received. All have completed field-testing at 29 Palms, Cold Regions Test Center, and Tropic Test Center 4QFY01 – 2QFY02. Due to funding shortfalls, chemical agent swatch testing has been postponed until 1QFY03. Upon completion of agent testing, the candidates will be evaluated for inclusion on the Qualified Products List (QPL).
Suit shortages are projected to escalate in the next few years because the majority of suits in the current inventory will reach the end of their useful life and expire by 2007, and new Joint Service Lightweight Integrated Suit Technology (JSLIST) suits, along with other new generation protective ensemble components such as gloves and boots, are not entering the inventory as quickly as originally planned. Consequently, the old suits are expiring faster than they are being replaced.
Some ensemble components, particularly suits, may not be available in adequate numbers to meet near-term minimum requirements. As of August 30, 2002, DOD had procured about 1.5 million of the new JSLIST suits, of which the majority were issued to the military services. Others are held in Defense Logistics Agency reserves, provided to foreign governments under the Foreign Military Sales program, or allocated to domestic uses. Together with the existing inventory of earlier-generation suits, it was estimated that DOD had a total of 4.5 million suits.
|
|

David
Fri March 21, 2003 6:25am Rating: 10
|
Joint Service Lightweight
The Joint Service Lightweight Integrated Suit Technology or JSLIST consists of a two piece garment designed to replace the Navy's existing Chemical Protection Overgarment (CPO). The JSLIST garment offers a number of advantages over the Navy' s current CPO. The JSLIST garment features state-of-the-art chemical protective lining technology which provides increased chemical protection while allowing more mobility for the wearer, and can be laundered up to three times. The CPO suit contains a charcoal impregnated lining. During wear, this lining is leached onto the wearer causing inner garments to become coated with charcoal dust. The CPO suit would disintegrate if laundered.
In 1993 the U.S. Marine Corps Systems Command, the U.S. Army Aviation and Troop Command, the U.S. Naval Sea Systems Command and the U.S. Air Force Material Command signed a Memorandum of Agreement establishing the JSLIST Program. The program combined development and testing efforts resulting in the procurement of a single U.S. military CBR Garment at a significantly reduced cost.
The U.S. Army Natick Soldier Systems Center is participating in the management, design and development of the next generation chemical/biological protective clothing system. Key requirements of the JSLIST program included protection against chemical/biological agents, a lighter weight, more flexible garment, and the ability to be laundered. Key requirements of the footwear include combined environmental and CB protection, POL resistance, and self flame extinguishing characteristics. In addition, the system is required to be durable, designed to take into account the human factors of (and acceptability to) the user, and reduce the heat stress associated with protective gear.
JSLIST consolidates service programs to develop next generation chemical/biological protective clothing systems into common goal objectives: obtain the best suit possible at the least cost; minimize types of suits in service; maximize economies of scale; and conserve service resources. JSLIST created an avenue for new, potential candidate chemical protective material technologies/prototype ensembles to be evaluated for technical merit and performance. This process screened potential technologies for inclusion into future advanced development programs.
Description:
Components include an Overgarment to be worn over the Battle Dress Uniform (BDU), and the Multipurpose Rain / Snow / CB Overboot (MULO). These items allow complete MOPP and heat stress management flexibility while tailoring the protection levels relative to mission scenarios and threat. Procurement of these items began in FY97.
The JSLIST program developed and is fielding the JSLIST Overgarment and is manufacturing Multi-purpose Overboots (MULO). The JSLIST Overgarment and the Multipurpose Overboot (MULO) were adopted by all four services. These items, when combined with standard CB protective butyl gloves and masks for respiratory protection, allow complete MOPP flexibility. The Joint Firefighter Integrated Response Ensemble (J-FIRE) will also utilize the JSLIST overgarment.
The JSLIST overgarment is designed to replace the Battle Dress Overgarment, the USMC Saratoga, and the Navy Chemical Protective Overgarment. It is lighter and less bulky than the previous Battle Dress Overgarment (BDO) chemical protective garments, is durable for 45 days, can be laundered up to six times and provides 24 hours of protection against liquid and vapor chemical challenges. The overgarment consists of a coat and trousers. The trousers have bellows-type pockets, high-waist, adjustable suspenders, and adjustable waistband. The trousers also have a slide fastener front opening with protective flap and a bellows pocket with flap located on each thigh. Each leg opening has two hook and loop ankle adjustment tabs. The waist-length coat has an integral hood, a slide fastener front concealed by a flap with hook and loop closure, enclosed extendable elasticized drawcord hem with jacket retention cord, full-length sleeves with hoop and loop wrist closure adjustment tabs, and an outside bellows pocket with flap on the left sleeve. The outer shell of both pieces is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back. Garments are being procured in 4-color Woodland Camouflage or 3-color Desert Camouflage patterns.
Component Materials: The outer shell is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back.
Color: The outer layer is a 40 color Woodland Camouflage pattern or a 3-color Desert Camouflage pattern.
Weight: 2.63 kg (5.8 lbs) per overgarment (Med/Reg)
Size: Coat, 7 sizes, Small/X-Short through Large/Long; Trousers, 7 sizes, Small/X-Short through Large/Long
Basis of Issue: The overgarment will be issued to troops requiring chemical protection.
Price: Coat, Med/Reg $91.80; Trousers, Med/Reg $91.80
NSN: Coat, Med/Reg 8415-01-444-2310; Trousers, Med/Reg 8415-01-444-1238
The JSLIST suit has a five-year shelf life, with an estimated total life of 15 years. Once a production lot of suits has reached five years of age, samples from that lot are visually inspected and chemical agent tested to determine whether the shelf life of that lot should be extended an additional five years with sound confidence of quality / durability. Once the suit reaches ten years of service life it is chemical tested, inspected, and if qualified, is extended annually thereafter. Equipment Assessment Program personnel will perform the visual inspection. The chemical testing will be performed by the Battelle Memorial Institute. Inspection and testing of the JSLIST suits will begin in FY02 (first five year period) for shelf life extension. Representative samples from FY97 production lots will be inspected at that time.
JSLIST suits in packages with some loss of vacuum, but no clearly visible holes or tears, are considered fully mission-capable. If a bag is opened or accidentally torn, and has not been exposed to any petroleum, oil, or lubricant (POL) products or possible contaminants and not damaged in any way, it can be immediately re-packaged or carefully repaired with high quality adhesive tape, "duct tape", or some similar product to re-create the seal, and it will maintain its original shelf life. Repair procedures to the inner bag should not obliterate surveillance data. If a package is visibly torn or punctured with no determination as to when it was damaged or to what contaminants the suit was exposed, the suit should be used for training only. The words training only must be stenciled 2.5 inches high or larger on the outside of a sleeve or leg of the item, in a contrasting colored permanent ink.
The Multi-purpose Overboots (MULO) will replace the black vinyl overboot/ green vinyl overboot (BVO/GVO). The MULO is a 60 day boot that provides 24 hours of chemical protection. The boot has increased traction, improved durability, petroleum, oil, and lubricant (POL) and flame resistance, and better chemical protection than the BVO/GVO.
The focus of Joint Service Lightweight Integrated Suit Technology Pre-Planned Product Improvement (JSLIST P3I) is to leverage Industry for mature fabric technologies for use in garments. The existing JSLIST design will be used as the baseline, with minimum modification as necessary for improvement. Mature fabric technologies and designs for gloves and socks will be sought as well to address the glove and sock requirements that were not met in JSLIST.
A market survey was conducted in FY97. Materials received from responding forms were evaluated, and material screening was scheduled to be completed in 4FQ98. Field evaluation was projected to start 1QFY99, and technology insertion in 1QFY00.
The JSLIST P3I is a follow-on to the existing JSLIST program which developed a joint service chemical protective ensemble. It will address the JSLIST objectives (i.e. desired) requirements and those that were not met. This joint program will include full participation by the US Air Force, Army, Marine Corps, and Navy.
The JSLIST Block 1 Glove Upgrade (JB1GU) Program is seeking an interim glove to replace the current butyl rubber glove. The follow on to the JB1GU will be the JB2GU program that will be produce gloves for both ground and aviation units. The Joint Protective Aircrew Ensemble (JPACE) will be developed to provide aviators with the same advantages and improved protection as JSLIST provides to other warfighters. Similarly, clothing systems for Explosive Ordnance Disposal (EOD) personnel and firefighters are required to enhance existing chemical protection systems.
In an attempt to encourage competition and lower costs, the Joint Service Lightweight Integrated Suit Technology (JSLIST) program solicited in 4QFY00 for JSLIST overgarments in alternate materials, but having the exact same design as the original JSLIST. The purpose of the JSLIST Additional Source Qualification (JASQ) program is to qualify additional manufacturers to provide JSLIST overgarments. Manufacturers could also submit Industry Initiated Demonstration Products (IIDP) in alternate materials that might require a different design. These though will be evaluated for potential use in future garments and can not be qualified for use as a substitute JSLIST overgarment. After release of Request for Proposal in FY00, four candidate materials and two IIDP candidates were received. All have completed field-testing at 29 Palms, Cold Regions Test Center, and Tropic Test Center 4QFY01 – 2QFY02. Due to funding shortfalls, chemical agent swatch testing has been postponed until 1QFY03. Upon completion of agent testing, the candidates will be evaluated for inclusion on the Qualified Products List (QPL).
Suit shortages are projected to escalate in the next few years because the majority of suits in the current inventory will reach the end of their useful life and expire by 2007, and new Joint Service Lightweight Integrated Suit Technology (JSLIST) suits, along with other new generation protective ensemble components such as gloves and boots, are not entering the inventory as quickly as originally planned. Consequently, the old suits are expiring faster than they are being replaced.
Some ensemble components, particularly suits, may not be available in adequate numbers to meet near-term minimum requirements. As of August 30, 2002, DOD had procured about 1.5 million of the new JSLIST suits, of which the majority were issued to the military services. Others are held in Defense Logistics Agency reserves, provided to foreign governments under the Foreign Military Sales program, or allocated to domestic uses. Together with the existing inventory of earlier-generation suits, it was estimated that DOD had a total of 4.5 million suits.
|
|

David
Fri March 21, 2003 6:25am
|
Joint Service Lightweight
The Joint Service Lightweight Integrated Suit Technology or JSLIST consists of a two piece garment designed to replace the Navy's existing Chemical Protection Overgarment (CPO). The JSLIST garment offers a number of advantages over the Navy' s current CPO. The JSLIST garment features state-of-the-art chemical protective lining technology which provides increased chemical protection while allowing more mobility for the wearer, and can be laundered up to three times. The CPO suit contains a charcoal impregnated lining. During wear, this lining is leached onto the wearer causing inner garments to become coated with charcoal dust. The CPO suit would disintegrate if laundered.
In 1993 the U.S. Marine Corps Systems Command, the U.S. Army Aviation and Troop Command, the U.S. Naval Sea Systems Command and the U.S. Air Force Material Command signed a Memorandum of Agreement establishing the JSLIST Program. The program combined development and testing efforts resulting in the procurement of a single U.S. military CBR Garment at a significantly reduced cost.
The U.S. Army Natick Soldier Systems Center is participating in the management, design and development of the next generation chemical/biological protective clothing system. Key requirements of the JSLIST program included protection against chemical/biological agents, a lighter weight, more flexible garment, and the ability to be laundered. Key requirements of the footwear include combined environmental and CB protection, POL resistance, and self flame extinguishing characteristics. In addition, the system is required to be durable, designed to take into account the human factors of (and acceptability to) the user, and reduce the heat stress associated with protective gear.
JSLIST consolidates service programs to develop next generation chemical/biological protective clothing systems into common goal objectives: obtain the best suit possible at the least cost; minimize types of suits in service; maximize economies of scale; and conserve service resources. JSLIST created an avenue for new, potential candidate chemical protective material technologies/prototype ensembles to be evaluated for technical merit and performance. This process screened potential technologies for inclusion into future advanced development programs.
Description:
Components include an Overgarment to be worn over the Battle Dress Uniform (BDU), and the Multipurpose Rain / Snow / CB Overboot (MULO). These items allow complete MOPP and heat stress management flexibility while tailoring the protection levels relative to mission scenarios and threat. Procurement of these items began in FY97.
The JSLIST program developed and is fielding the JSLIST Overgarment and is manufacturing Multi-purpose Overboots (MULO). The JSLIST Overgarment and the Multipurpose Overboot (MULO) were adopted by all four services. These items, when combined with standard CB protective butyl gloves and masks for respiratory protection, allow complete MOPP flexibility. The Joint Firefighter Integrated Response Ensemble (J-FIRE) will also utilize the JSLIST overgarment.
The JSLIST overgarment is designed to replace the Battle Dress Overgarment, the USMC Saratoga, and the Navy Chemical Protective Overgarment. It is lighter and less bulky than the previous Battle Dress Overgarment (BDO) chemical protective garments, is durable for 45 days, can be laundered up to six times and provides 24 hours of protection against liquid and vapor chemical challenges. The overgarment consists of a coat and trousers. The trousers have bellows-type pockets, high-waist, adjustable suspenders, and adjustable waistband. The trousers also have a slide fastener front opening with protective flap and a bellows pocket with flap located on each thigh. Each leg opening has two hook and loop ankle adjustment tabs. The waist-length coat has an integral hood, a slide fastener front concealed by a flap with hook and loop closure, enclosed extendable elasticized drawcord hem with jacket retention cord, full-length sleeves with hoop and loop wrist closure adjustment tabs, and an outside bellows pocket with flap on the left sleeve. The outer shell of both pieces is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back. Garments are being procured in 4-color Woodland Camouflage or 3-color Desert Camouflage patterns.
Component Materials: The outer shell is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back.
Color: The outer layer is a 40 color Woodland Camouflage pattern or a 3-color Desert Camouflage pattern.
Weight: 2.63 kg (5.8 lbs) per overgarment (Med/Reg)
Size: Coat, 7 sizes, Small/X-Short through Large/Long; Trousers, 7 sizes, Small/X-Short through Large/Long
Basis of Issue: The overgarment will be issued to troops requiring chemical protection.
Price: Coat, Med/Reg $91.80; Trousers, Med/Reg $91.80
NSN: Coat, Med/Reg 8415-01-444-2310; Trousers, Med/Reg 8415-01-444-1238
The JSLIST suit has a five-year shelf life, with an estimated total life of 15 years. Once a production lot of suits has reached five years of age, samples from that lot are visually inspected and chemical agent tested to determine whether the shelf life of that lot should be extended an additional five years with sound confidence of quality / durability. Once the suit reaches ten years of service life it is chemical tested, inspected, and if qualified, is extended annually thereafter. Equipment Assessment Program personnel will perform the visual inspection. The chemical testing will be performed by the Battelle Memorial Institute. Inspection and testing of the JSLIST suits will begin in FY02 (first five year period) for shelf life extension. Representative samples from FY97 production lots will be inspected at that time.
JSLIST suits in packages with some loss of vacuum, but no clearly visible holes or tears, are considered fully mission-capable. If a bag is opened or accidentally torn, and has not been exposed to any petroleum, oil, or lubricant (POL) products or possible contaminants and not damaged in any way, it can be immediately re-packaged or carefully repaired with high quality adhesive tape, "duct tape", or some similar product to re-create the seal, and it will maintain its original shelf life. Repair procedures to the inner bag should not obliterate surveillance data. If a package is visibly torn or punctured with no determination as to when it was damaged or to what contaminants the suit was exposed, the suit should be used for training only. The words training only must be stenciled 2.5 inches high or larger on the outside of a sleeve or leg of the item, in a contrasting colored permanent ink.
The Multi-purpose Overboots (MULO) will replace the black vinyl overboot/ green vinyl overboot (BVO/GVO). The MULO is a 60 day boot that provides 24 hours of chemical protection. The boot has increased traction, improved durability, petroleum, oil, and lubricant (POL) and flame resistance, and better chemical protection than the BVO/GVO.
The focus of Joint Service Lightweight Integrated Suit Technology Pre-Planned Product Improvement (JSLIST P3I) is to leverage Industry for mature fabric technologies for use in garments. The existing JSLIST design will be used as the baseline, with minimum modification as necessary for improvement. Mature fabric technologies and designs for gloves and socks will be sought as well to address the glove and sock requirements that were not met in JSLIST.
A market survey was conducted in FY97. Materials received from responding forms were evaluated, and material screening was scheduled to be completed in 4FQ98. Field evaluation was projected to start 1QFY99, and technology insertion in 1QFY00.
The JSLIST P3I is a follow-on to the existing JSLIST program which developed a joint service chemical protective ensemble. It will address the JSLIST objectives (i.e. desired) requirements and those that were not met. This joint program will include full participation by the US Air Force, Army, Marine Corps, and Navy.
The JSLIST Block 1 Glove Upgrade (JB1GU) Program is seeking an interim glove to replace the current butyl rubber glove. The follow on to the JB1GU will be the JB2GU program that will be produce gloves for both ground and aviation units. The Joint Protective Aircrew Ensemble (JPACE) will be developed to provide aviators with the same advantages and improved protection as JSLIST provides to other warfighters. Similarly, clothing systems for Explosive Ordnance Disposal (EOD) personnel and firefighters are required to enhance existing chemical protection systems.
In an attempt to encourage competition and lower costs, the Joint Service Lightweight Integrated Suit Technology (JSLIST) program solicited in 4QFY00 for JSLIST overgarments in alternate materials, but having the exact same design as the original JSLIST. The purpose of the JSLIST Additional Source Qualification (JASQ) program is to qualify additional manufacturers to provide JSLIST overgarments. Manufacturers could also submit Industry Initiated Demonstration Products (IIDP) in alternate materials that might require a different design. These though will be evaluated for potential use in future garments and can not be qualified for use as a substitute JSLIST overgarment. After release of Request for Proposal in FY00, four candidate materials and two IIDP candidates were received. All have completed field-testing at 29 Palms, Cold Regions Test Center, and Tropic Test Center 4QFY01 – 2QFY02. Due to funding shortfalls, chemical agent swatch testing has been postponed until 1QFY03. Upon completion of agent testing, the candidates will be evaluated for inclusion on the Qualified Products List (QPL).
Suit shortages are projected to escalate in the next few years because the majority of suits in the current inventory will reach the end of their useful life and expire by 2007, and new Joint Service Lightweight Integrated Suit Technology (JSLIST) suits, along with other new generation protective ensemble components such as gloves and boots, are not entering the inventory as quickly as originally planned. Consequently, the old suits are expiring faster than they are being replaced.
Some ensemble components, particularly suits, may not be available in adequate numbers to meet near-term minimum requirements. As of August 30, 2002, DOD had procured about 1.5 million of the new JSLIST suits, of which the majority were issued to the military services. Others are held in Defense Logistics Agency reserves, provided to foreign governments under the Foreign Military Sales program, or allocated to domestic uses. Together with the existing inventory of earlier-generation suits, it was estimated that DOD had a total of 4.5 million suits.
|
|

David
Fri March 21, 2003 6:25am
|
Joint Service Lightweight
The Joint Service Lightweight Integrated Suit Technology or JSLIST consists of a two piece garment designed to replace the Navy's existing Chemical Protection Overgarment (CPO). The JSLIST garment offers a number of advantages over the Navy' s current CPO. The JSLIST garment features state-of-the-art chemical protective lining technology which provides increased chemical protection while allowing more mobility for the wearer, and can be laundered up to three times. The CPO suit contains a charcoal impregnated lining. During wear, this lining is leached onto the wearer causing inner garments to become coated with charcoal dust. The CPO suit would disintegrate if laundered.
In 1993 the U.S. Marine Corps Systems Command, the U.S. Army Aviation and Troop Command, the U.S. Naval Sea Systems Command and the U.S. Air Force Material Command signed a Memorandum of Agreement establishing the JSLIST Program. The program combined development and testing efforts resulting in the procurement of a single U.S. military CBR Garment at a significantly reduced cost.
The U.S. Army Natick Soldier Systems Center is participating in the management, design and development of the next generation chemical/biological protective clothing system. Key requirements of the JSLIST program included protection against chemical/biological agents, a lighter weight, more flexible garment, and the ability to be laundered. Key requirements of the footwear include combined environmental and CB protection, POL resistance, and self flame extinguishing characteristics. In addition, the system is required to be durable, designed to take into account the human factors of (and acceptability to) the user, and reduce the heat stress associated with protective gear.
JSLIST consolidates service programs to develop next generation chemical/biological protective clothing systems into common goal objectives: obtain the best suit possible at the least cost; minimize types of suits in service; maximize economies of scale; and conserve service resources. JSLIST created an avenue for new, potential candidate chemical protective material technologies/prototype ensembles to be evaluated for technical merit and performance. This process screened potential technologies for inclusion into future advanced development programs.
Description:
Components include an Overgarment to be worn over the Battle Dress Uniform (BDU), and the Multipurpose Rain / Snow / CB Overboot (MULO). These items allow complete MOPP and heat stress management flexibility while tailoring the protection levels relative to mission scenarios and threat. Procurement of these items began in FY97.
The JSLIST program developed and is fielding the JSLIST Overgarment and is manufacturing Multi-purpose Overboots (MULO). The JSLIST Overgarment and the Multipurpose Overboot (MULO) were adopted by all four services. These items, when combined with standard CB protective butyl gloves and masks for respiratory protection, allow complete MOPP flexibility. The Joint Firefighter Integrated Response Ensemble (J-FIRE) will also utilize the JSLIST overgarment.
The JSLIST overgarment is designed to replace the Battle Dress Overgarment, the USMC Saratoga, and the Navy Chemical Protective Overgarment. It is lighter and less bulky than the previous Battle Dress Overgarment (BDO) chemical protective garments, is durable for 45 days, can be laundered up to six times and provides 24 hours of protection against liquid and vapor chemical challenges. The overgarment consists of a coat and trousers. The trousers have bellows-type pockets, high-waist, adjustable suspenders, and adjustable waistband. The trousers also have a slide fastener front opening with protective flap and a bellows pocket with flap located on each thigh. Each leg opening has two hook and loop ankle adjustment tabs. The waist-length coat has an integral hood, a slide fastener front concealed by a flap with hook and loop closure, enclosed extendable elasticized drawcord hem with jacket retention cord, full-length sleeves with hoop and loop wrist closure adjustment tabs, and an outside bellows pocket with flap on the left sleeve. The outer shell of both pieces is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back. Garments are being procured in 4-color Woodland Camouflage or 3-color Desert Camouflage patterns.
Component Materials: The outer shell is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back.
Color: The outer layer is a 40 color Woodland Camouflage pattern or a 3-color Desert Camouflage pattern.
Weight: 2.63 kg (5.8 lbs) per overgarment (Med/Reg)
Size: Coat, 7 sizes, Small/X-Short through Large/Long; Trousers, 7 sizes, Small/X-Short through Large/Long
Basis of Issue: The overgarment will be issued to troops requiring chemical protection.
Price: Coat, Med/Reg $91.80; Trousers, Med/Reg $91.80
NSN: Coat, Med/Reg 8415-01-444-2310; Trousers, Med/Reg 8415-01-444-1238
The JSLIST suit has a five-year shelf life, with an estimated total life of 15 years. Once a production lot of suits has reached five years of age, samples from that lot are visually inspected and chemical agent tested to determine whether the shelf life of that lot should be extended an additional five years with sound confidence of quality / durability. Once the suit reaches ten years of service life it is chemical tested, inspected, and if qualified, is extended annually thereafter. Equipment Assessment Program personnel will perform the visual inspection. The chemical testing will be performed by the Battelle Memorial Institute. Inspection and testing of the JSLIST suits will begin in FY02 (first five year period) for shelf life extension. Representative samples from FY97 production lots will be inspected at that time.
JSLIST suits in packages with some loss of vacuum, but no clearly visible holes or tears, are considered fully mission-capable. If a bag is opened or accidentally torn, and has not been exposed to any petroleum, oil, or lubricant (POL) products or possible contaminants and not damaged in any way, it can be immediately re-packaged or carefully repaired with high quality adhesive tape, "duct tape", or some similar product to re-create the seal, and it will maintain its original shelf life. Repair procedures to the inner bag should not obliterate surveillance data. If a package is visibly torn or punctured with no determination as to when it was damaged or to what contaminants the suit was exposed, the suit should be used for training only. The words training only must be stenciled 2.5 inches high or larger on the outside of a sleeve or leg of the item, in a contrasting colored permanent ink.
The Multi-purpose Overboots (MULO) will replace the black vinyl overboot/ green vinyl overboot (BVO/GVO). The MULO is a 60 day boot that provides 24 hours of chemical protection. The boot has increased traction, improved durability, petroleum, oil, and lubricant (POL) and flame resistance, and better chemical protection than the BVO/GVO.
The focus of Joint Service Lightweight Integrated Suit Technology Pre-Planned Product Improvement (JSLIST P3I) is to leverage Industry for mature fabric technologies for use in garments. The existing JSLIST design will be used as the baseline, with minimum modification as necessary for improvement. Mature fabric technologies and designs for gloves and socks will be sought as well to address the glove and sock requirements that were not met in JSLIST.
A market survey was conducted in FY97. Materials received from responding forms were evaluated, and material screening was scheduled to be completed in 4FQ98. Field evaluation was projected to start 1QFY99, and technology insertion in 1QFY00.
The JSLIST P3I is a follow-on to the existing JSLIST program which developed a joint service chemical protective ensemble. It will address the JSLIST objectives (i.e. desired) requirements and those that were not met. This joint program will include full participation by the US Air Force, Army, Marine Corps, and Navy.
The JSLIST Block 1 Glove Upgrade (JB1GU) Program is seeking an interim glove to replace the current butyl rubber glove. The follow on to the JB1GU will be the JB2GU program that will be produce gloves for both ground and aviation units. The Joint Protective Aircrew Ensemble (JPACE) will be developed to provide aviators with the same advantages and improved protection as JSLIST provides to other warfighters. Similarly, clothing systems for Explosive Ordnance Disposal (EOD) personnel and firefighters are required to enhance existing chemical protection systems.
In an attempt to encourage competition and lower costs, the Joint Service Lightweight Integrated Suit Technology (JSLIST) program solicited in 4QFY00 for JSLIST overgarments in alternate materials, but having the exact same design as the original JSLIST. The purpose of the JSLIST Additional Source Qualification (JASQ) program is to qualify additional manufacturers to provide JSLIST overgarments. Manufacturers could also submit Industry Initiated Demonstration Products (IIDP) in alternate materials that might require a different design. These though will be evaluated for potential use in future garments and can not be qualified for use as a substitute JSLIST overgarment. After release of Request for Proposal in FY00, four candidate materials and two IIDP candidates were received. All have completed field-testing at 29 Palms, Cold Regions Test Center, and Tropic Test Center 4QFY01 – 2QFY02. Due to funding shortfalls, chemical agent swatch testing has been postponed until 1QFY03. Upon completion of agent testing, the candidates will be evaluated for inclusion on the Qualified Products List (QPL).
Suit shortages are projected to escalate in the next few years because the majority of suits in the current inventory will reach the end of their useful life and expire by 2007, and new Joint Service Lightweight Integrated Suit Technology (JSLIST) suits, along with other new generation protective ensemble components such as gloves and boots, are not entering the inventory as quickly as originally planned. Consequently, the old suits are expiring faster than they are being replaced.
Some ensemble components, particularly suits, may not be available in adequate numbers to meet near-term minimum requirements. As of August 30, 2002, DOD had procured about 1.5 million of the new JSLIST suits, of which the majority were issued to the military services. Others are held in Defense Logistics Agency reserves, provided to foreign governments under the Foreign Military Sales program, or allocated to domestic uses. Together with the existing inventory of earlier-generation suits, it was estimated that DOD had a total of 4.5 million suits.
|
|

David
Fri March 21, 2003 6:25am
|
Joint Service Lightweight
The Joint Service Lightweight Integrated Suit Technology or JSLIST consists of a two piece garment designed to replace the Navy's existing Chemical Protection Overgarment (CPO). The JSLIST garment offers a number of advantages over the Navy' s current CPO. The JSLIST garment features state-of-the-art chemical protective lining technology which provides increased chemical protection while allowing more mobility for the wearer, and can be laundered up to three times. The CPO suit contains a charcoal impregnated lining. During wear, this lining is leached onto the wearer causing inner garments to become coated with charcoal dust. The CPO suit would disintegrate if laundered.
In 1993 the U.S. Marine Corps Systems Command, the U.S. Army Aviation and Troop Command, the U.S. Naval Sea Systems Command and the U.S. Air Force Material Command signed a Memorandum of Agreement establishing the JSLIST Program. The program combined development and testing efforts resulting in the procurement of a single U.S. military CBR Garment at a significantly reduced cost.
The U.S. Army Natick Soldier Systems Center is participating in the management, design and development of the next generation chemical/biological protective clothing system. Key requirements of the JSLIST program included protection against chemical/biological agents, a lighter weight, more flexible garment, and the ability to be laundered. Key requirements of the footwear include combined environmental and CB protection, POL resistance, and self flame extinguishing characteristics. In addition, the system is required to be durable, designed to take into account the human factors of (and acceptability to) the user, and reduce the heat stress associated with protective gear.
JSLIST consolidates service programs to develop next generation chemical/biological protective clothing systems into common goal objectives: obtain the best suit possible at the least cost; minimize types of suits in service; maximize economies of scale; and conserve service resources. JSLIST created an avenue for new, potential candidate chemical protective material technologies/prototype ensembles to be evaluated for technical merit and performance. This process screened potential technologies for inclusion into future advanced development programs.
Description:
Components include an Overgarment to be worn over the Battle Dress Uniform (BDU), and the Multipurpose Rain / Snow / CB Overboot (MULO). These items allow complete MOPP and heat stress management flexibility while tailoring the protection levels relative to mission scenarios and threat. Procurement of these items began in FY97.
The JSLIST program developed and is fielding the JSLIST Overgarment and is manufacturing Multi-purpose Overboots (MULO). The JSLIST Overgarment and the Multipurpose Overboot (MULO) were adopted by all four services. These items, when combined with standard CB protective butyl gloves and masks for respiratory protection, allow complete MOPP flexibility. The Joint Firefighter Integrated Response Ensemble (J-FIRE) will also utilize the JSLIST overgarment.
The JSLIST overgarment is designed to replace the Battle Dress Overgarment, the USMC Saratoga, and the Navy Chemical Protective Overgarment. It is lighter and less bulky than the previous Battle Dress Overgarment (BDO) chemical protective garments, is durable for 45 days, can be laundered up to six times and provides 24 hours of protection against liquid and vapor chemical challenges. The overgarment consists of a coat and trousers. The trousers have bellows-type pockets, high-waist, adjustable suspenders, and adjustable waistband. The trousers also have a slide fastener front opening with protective flap and a bellows pocket with flap located on each thigh. Each leg opening has two hook and loop ankle adjustment tabs. The waist-length coat has an integral hood, a slide fastener front concealed by a flap with hook and loop closure, enclosed extendable elasticized drawcord hem with jacket retention cord, full-length sleeves with hoop and loop wrist closure adjustment tabs, and an outside bellows pocket with flap on the left sleeve. The outer shell of both pieces is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back. Garments are being procured in 4-color Woodland Camouflage or 3-color Desert Camouflage patterns.
Component Materials: The outer shell is a 50/50 nylon/cotton poplin ripstop with a durable water repellent finish. The liner layer consists of a nonwoven front laminated to activated carbon spheres and bonded to a tricot knit back.
Color: The outer layer is a 40 color Woodland Camouflage pattern or a 3-color Desert Camouflage pattern.
Weight: 2.63 kg (5.8 lbs) per overgarment (Med/Reg)
Size: Coat, 7 sizes, Small/X-Short through Large/Long; Trousers, 7 sizes, Small/X-Short through Large/Long
Basis of Issue: The overgarment will be issued to troops requiring chemical protection.
Price: Coat, Med/Reg $91.80; Trousers, Med/Reg $91.80
NSN: Coat, Med/Reg 8415-01-444-2310; Trousers, Med/Reg 8415-01-444-1238
The JSLIST suit has a five-year shelf life, with an estimated total life of 15 years. Once a production lot of suits has reached five years of age, samples from that lot are visually inspected and chemical agent tested to determine whether the shelf life of that lot should be extended an additional five years with sound confidence of quality / durability. Once the suit reaches ten years of service life it is chemical tested, inspected, and if qualified, is extended annually thereafter. Equipment Assessment Program personnel will perform the visual inspection. The chemical testing will be performed by the Battelle Memorial Institute. Inspection and testing of the JSLIST suits will begin in FY02 (first five year period) for shelf life extension. Representative samples from FY97 production lots will be inspected at that time.
JSLIST suits in packages with some loss of vacuum, but no clearly visible holes or tears, are considered fully mission-capable. If a bag is opened or accidentally torn, and has not been exposed to any petroleum, oil, or lubricant (POL) products or possible contaminants and not damaged in any way, it can be immediately re-packaged or carefully repaired with high quality adhesive tape, "duct tape", or some similar product to re-create the seal, and it will maintain its original shelf life. Repair procedures to the inner bag should not obliterate surveillance data. If a package is visibly torn or punctured with no determination as to when it was damaged or to what contaminants the suit was exposed, the suit should be used for training only. The words training only must be stenciled 2.5 inches high or larger on the outside of a sleeve or leg of the item, in a contrasting colored permanent ink.
The Multi-purpose Overboots (MULO) will replace the black vinyl overboot/ green vinyl overboot (BVO/GVO). The MULO is a 60 day boot that provides 24 hours of chemical protection. The boot has increased traction, improved durability, petroleum, oil, and lubricant (POL) and flame resistance, and better chemical protection than the BVO/GVO.
The focus of Joint Service Lightweight Integrated Suit Technology Pre-Planned Product Improvement (JSLIST P3I) is to leverage Industry for mature fabric technologies for use in garments. The existing JSLIST design will be used as the baseline, with minimum modification as necessary for improvement. Mature fabric technologies and designs for gloves and socks will be sought as well to address the glove and sock requirements that were not met in JSLIST.
A market survey was conducted in FY97. Materials received from responding forms were evaluated, and material screening was scheduled to be completed in 4FQ98. Field evaluation was projected to start 1QFY99, and technology insertion in 1QFY00.
The JSLIST P3I is a follow-on to the existing JSLIST program which developed a joint service chemical protective ensemble. It will address the JSLIST objectives (i.e. desired) requirements and those that were not met. This joint program will include full participation by the US Air Force, Army, Marine Corps, and Navy.
The JSLIST Block 1 Glove Upgrade (JB1GU) Program is seeking an interim glove to replace the current butyl rubber glove. The follow on to the JB1GU will be the JB2GU program that will be produce gloves for both ground and aviation units. The Joint Protective Aircrew Ensemble (JPACE) will be developed to provide aviators with the same advantages and improved protection as JSLIST provides to other warfighters. Similarly, clothing systems for Explosive Ordnance Disposal (EOD) personnel and firefighters are required to enhance existing chemical protection systems.
In an attempt to encourage competition and lower costs, the Joint Service Lightweight Integrated Suit Technology (JSLIST) program solicited in 4QFY00 for JSLIST overgarments in alternate materials, but having the exact same design as the original JSLIST. The purpose of the JSLIST Additional Source Qualification (JASQ) program is to qualify additional manufacturers to provide JSLIST overgarments. Manufacturers could also submit Industry Initiated Demonstration Products (IIDP) in alternate materials that might require a different design. These though will be evaluated for potential use in future garments and can not be qualified for use as a substitute JSLIST overgarment. After release of Request for Proposal in FY00, four candidate materials and two IIDP candidates were received. All have completed field-testing at 29 Palms, Cold Regions Test Center, and Tropic Test Center 4QFY01 – 2QFY02. Due to funding shortfalls, chemical agent swatch testing has been postponed until 1QFY03. Upon completion of agent testing, the candidates will be evaluated for inclusion on the Qualified Products List (QPL).
Suit shortages are projected to escalate in the next few years because the majority of suits in the current inventory will reach the end of their useful life and expire by 2007, and new Joint Service Lightweight Integrated Suit Technology (JSLIST) suits, along with other new generation protective ensemble components such as gloves and boots, are not entering the inventory as quickly as originally planned. Consequently, the old suits are expiring faster than they are being replaced.
Some ensemble components, particularly suits, may not be available in adequate numbers to meet near-term minimum requirements. As of August 30, 2002, DOD had procured about 1.5 million of the new JSLIST suits, of which the majority were issued to the military services. Others are held in Defense Logistics Agency reserves, provided to foreign governments under the Foreign Military Sales program, or allocated to domestic uses. Together with the existing inventory of earlier-generation suits, it was estimated that DOD had a total of 4.5 million suits.
|
|
|