The Patriot Files Forums  


  Home · Search · Register  

113 result(s) to your search. (firing) Prev Page · Next Page

2m1_4.jpg

David
Thu January 16, 2003 10:59pm
M1 Abrams


Function: Main battle tank (MBT).






Description: The M1 has a very angular appearance, reflecting the modular nature of its armor components, with the turret mounted centrally on the hull. The M1 has a crew of four. The driver sits centered in the hull and forward of the turret, while the loader, gunner and tank commander occupy the turret, with the loader situated to the left of the main gun and the gunner and tank commander sitting in tandem on the right side. The driver's hatch has three periscope vision blocks which provide for forward vision. The center vision block may be removed and replaced with an AN/TVS-2 low-light periscope. The engine is mounted in the rear of the vehicle with the exhaust coming out from a louvered grill centrally mounted in the rear of the hull. The M1 utilizes a torsion bar suspension with seven pairs of cast aluminum road wheels and two return rollers. The drive sprocket is to the rear, an idler compensation wheel is located forward, and there is a gap between the first and second pair of road wheels. The M1 has armored skirts running the full length of the track. M1 track is made up of vulcanized rubber blocks (M156 variety) or removable rubber pads (M158.) The turret is also angular in appearance, with the main gun mounted in an exposed mantlet in the center of the turret face. The M68 rifled cannon is equipped with a metal thermal shroud, a bore gas evacuator located two-thirds of the way down on the barrel, and is equipped with a Muzzle Reference System collimator on the muzzle itself. The M240 coaxial (COAX) machine gun is located to the right of the main gun, with the flash tube extending through the main gun mantlet. The Gunner's Auxiliary Sight (GAS) aperture is located below the COAX flash tube on the right side of the main gun. The M1 has two turret access hatched, mounted side by side, in the middle of the turret roof. The loader's hatch, located on the left side, is equipped with a pintle mounted M240 7.62mm machine gun. The hatch itself is equipped with a single vision periscope on a rotating base. When not in use, the drivers AN/TVS-2 sight may be used in the loader's hatch vision block. The tank commander's hatch is ringed by vision periscopes and the Commander's Weapon Station cupola is equipped with an M2 HB caliber .50 machine gun. The M2 may be fired while the commander is "buttoned up" but the commander must be exposed to reload the weapon. The CWS can be reconfigured to fire an M240 as a replacement weapon. The Gunner's Primary Sight (GPS) is located forward of the commander's cupola. The GPS is housed in an armored box with hinged doors shielding the optics when not in use. The GPS is divided into two halves; a clear glass window for normal daylight viewing and an IR transparent Germanium coated window for the thermal imaging sight. The Laser Range Finder (LRF) is fired through the daylight window. There are individual sponson boxes located on either side of the turret for equipment storage. These boxes are approximately three feet (1m) long and are bracketed by a three-rail cargo rack which runs the length of the turret side. The smoke grenade launchers are located on either side of the turret, forward of the turret sponson boxes. There are mounting points for two radio antennae, one on either side of the turret rear, and the cross wind sensor is mounted upright in the center of the turret rear. A cargo bustle rack is mounted on the rear of the turret and runs the length of the turret rear (in early production M1s this rack was omitted and a fabric cargo net mounted in it's place. An Auxiliary Power Unit (APU) may be mounted in the turret bustle rack or on the rear of the hull.





History: Fielded in February 1980, the M1 General Abrams main battle tank revolutionized armored warfare. Incorporating an advanced shoot-on-the-move fire control system, a thermal imaging sight, a 1500 horsepower gas turbine engine and an advanced armor design similar to the Chobham armor developed in England, the M1 was the most lethal armored vehicle in the world. Conceived in 1971 as a replacement for the aging M60 tank, which was itself an extension of the 1050s era M 47/48 program, the M1 was going to be of a completely new design, establishing a new family of American main battle tanks. Providing the Abrams with a true shoot on the move capability, the fire control system automatically corrects for range, turret slew (motion) rate, crosswind, and tank axial tilt (cant). In addition, the gunner manually enters ammunition or weapon type, air and ammunition temperatures, barometric pressure, and gun tube wear, while range is instantly calculated by a Nd:YAG (Neodymium doped Yttrium Aluminum Garnet) near infrared laser rangefinder. Lastly, the gunner can compensate for gun tube deformation (caused either by heat generated from firing the cannon or atmospheric changes) through the use of a muzzle reference system, which allows for a rapid realignment of the cannon and the gunner's primary sight.


The Chobham armor built into the M1 represents a veritable leap in armor technology. Composed of layers of metal, ceramics, and spaces, this new armor is far superior to RHA (Rolled Homogeneous Armor) in defeating kinetic and chemical energy weapons. To increase crew safety and survivability, all of the M1's ammunition is stored in armored compartments which are designed vent dangerous gasses and fragments away from the crew in the event of an ammunition explosion. The crew and engine compartments are equipped with an automatic fire suppression system, utilizing numerous fire detection sensors and pressurized Halon gas, which can react to and suppress a compartment fire in less than 250 ms.


To survive on the NBC (Nuclear, Biological, Chemical) battlefield the M1 is also equipped with both an over pressurization and air sterilization system which will protect the crew from these hazards and allow them to continue combat operations without having to wear protective overgarments and masks while buttoned up inside the vehicle.


Lastly, the M1 was the first land combat vehicle to utilize a gas turbine multi fuel engine, which offers a higher power to weight ratio than any other contemporary tank power plant and gives the Abrams unparalleled tactical mobility and cross country speed. The M1 retains the M68 105mm rifled cannon used on the M60 series tanks, which was originally based on the British M7 105mm cannon design, and is capable of firing both rifled and fin stabilized ammunition. In addition, the M1 is equipped with two M240 7.62mm machine guns; one mounted coaxially with the main gun and fired by gunner, and the other mounted at the loader's station. The Commanders Weapon Station (CWS) is equipped with an M2 heavy barrel Caliber .50 machine gun. The CWS can be reconfigured to fire the M240 machine gun as a substitute.) The M1 is equipped with a pair of M250 red phosphorus smoke grenade launchers and is capable of generating smoke by injecting diesel fuel into the engine exhaust.


Originally designated the XM1, the first production model was designated the M1, of which 2,374 were built between 1982 and 1985. In 1984 the M1IP (Improved Product) was introduced, which was outwardly identical to the M1, but which incorporated a number of internal automotive, electronic and armor improvements. Production of the M1IP was halted at 84 tanks in 1986, when the Lima and Detroit tank plants were reconfigured to produce the up-gunned 120mm M1A1. In 1992 a study was conducted evaluating the feasibility of upgrading the Army's fleet of M1s to M1A2 SEP (Standard Equipment Package) standard and low rate production was approved in 1994. Since then the Army had agreed to convert 547 M1s to the M1A2 SEP standard.
2agm65_large.jpg

David
Thu January 16, 2003 11:24pm
AGM-65 Maverick


Function: The AGM-65 Maverick is a tactical, air-to-surface guided missile designed for close air support, interdiction and defense suppression mission. It provides stand-off capability and high probability of strike against a wide range of tactical targets, including armor, air defenses, ships, transportation equipment and fuel storage facilities.





Description: The Maverick is a modular design weapon. A different combination of the guidance package and warhead can be attached to the rocket motor section to produce a different weapon. The Maverick has three different seekers and two different warheads. The solid-rocket motor propulsion section is common to all variants. The seeker options are electro-optical (EO) imaging, imaging infrared (IR) or a laser guidance package. The warhead is in the missile's center section. Either a 125-pound shaped-charge warhead or a 300-pound penetrator warhead can be used. A contact fuse in the nose fires the shaped-charge warhead. The penetrator uses a delayed-fuse, allowing the warhead to penetrate the target with its kinetic energy before firing. The latter is very effective against large, hard targets. The AGM-65 has a cylindrical body with long-chord delta wings and tail control surfaces mounted close to the trailing edge of the wing of the aircraft using it.


A-10, F-15E and F-16 aircraft carry Mavericks. As many as six Mavericks can be carried by an aircraft, usually in three round, underwing clusters, allowing the pilot to engage several targets on one mission. The missile also has "launch-and-leave" capability that enables a pilot to fire it and immediately take evasive action or attack another target as the missile guides itself to the target. Mavericks can be launched from high altitudes to tree-top level and can hit targets ranging from a distance of a few thousand feet to 13 nautical miles at medium altitude.


Maverick B models have an electro-optical television guidance system. After the protective dome cover is automatically removed from the nose of the missile and its video circuitry activated, the scene viewed by the guidance system appears on a cockpit television screen. The pilot selects the target, centers cross hairs on it, locks on, then launches the missile. The Maverick B also has a screen magnification capability that enables the pilot to identify and lock on smaller and more distant targets.


The Maverick D has an imaging infrared guidance system, operated much like that of the A and B models, except that infrared video overcomes the daylight-only, adverse weather limitations of the other system. The infrared Maverick D can track heat generated by a target and provide the pilot a pictorial display of the target during darkness and hazy or inclement weather.


The Maverick E model is the only version having the laser-guided seeker section. It uses the heavyweight penetrator warhead. The U.S. Marine Corps are the only users of this variant.


The Maverick F is a naval variant of the D/G model (IR) currently in use by the U.S. Navy. It also uses the 300-pound penetrator warhead.


The Maverick G model essentially has the same guidance system as the D, with some software modifications that track larger targets. The G model's major difference is its heavyweight penetrator warhead, while Maverick B and D models employ the shaped-charge warhead.


Maverick K models are currently in development. They were developed by taking a G model and replacing the IR guidance system with an electro-optical (EO) television guidance system.





History: The Air Force accepted the first AGM-65A Maverick in August 1972. A total of 25,750 A and B Mavericks were purchased by the Air Force. Maverick As have recently been phased out of the inventory.


The Air Force is exploring the possibility of converting phased out A's and near obsolete B's and making an EO version to be named AGM-65H. The software in the H would be upgraded increasing its capability. The Air Force took delivery of the first AGM-65D in October 1983, with initial operational capability in February 1986. Delivery of operational AGM-65G missiles took place in 1989.


More than 5,000 AGM-65 A/B/D/E/F/G's were employed during Operation Desert Storm, mainly attacking armored targets. Mavericks played a large part in the destruction of Iraq's significant military force.





General Characteristics, AGM-65 Maverick





Contractors:
Raytheon Systems Corporation





Power Plant:
Thiokol TX-481 solid-propellant rocket motor





Launch Weight:
AGM-65B, 462 pounds (207.90 kilograms)


AGM-65D, 485 pounds (218.25 kilograms)


AGM-65E, 777 pounds (353.2 kilograms)


AGM-65F, 804 pounds (365.5 kilograms)


AGM-65G, 670 pounds (301.50 kilograms)


AGM-65K, 793 pounds (360.45 kilograms)





Diameter:
1 foot (30.48 centimeters)





Wingspan:
2 feet, 4 inches (71.12 centimeters)





Range:
Classified









Speed:
Classified





Aircraft:
Used aboard A-10, F-15E and F-16





Warhead:
AGM-65B/D: 125 pounds (56.25 kilograms), cone shaped


AGM-65E/F/G/K: 300 pounds (135 kilograms) delayed-fuse penetrator, heavyweight





Guidance System:
AGM-65B/K: electro-optical television


AGM-65D/F/G: imaging infrared


AGM-65E: laser guided





Inventory:
Classified





Date Deployed:
August 1972





Unit Cost:
$17,000 to $110,000 depending on the Maverick variant
2mk155_large.jpg

David
Thu January 16, 2003 11:48pm
Mk155 Mine Clearance Laun


Function: To clear a lane through a minefield during breaching operations. The MK155 Launcher, Mine Clearance (LMC) is part of the Mark 2 Mine Clearance System which also includes one M58A3/A4 Linear Demolition Charge (LDC) and one MK22 Mod 3/4 Rocket. The MK155 LMC, mounted on an M353 Trailer Chassis, will normally be towed by an Assault Amphibious Vehicle (AAVP7A1). The LDC will clear a lane 100 meters long by 16 meters wide and will be the initial minefield breaching asset used. Because the LDC is only effective against single impulse, non-blast resistant, pressure fused mines, a mechanical proofing device must also be used in a lane that has been explosively breached.





Description: The MK155 LMC is a hydraulic system which can be installed onto any M353 Trailer Chassis. All of the hydraulics are self contained. A hand pump is used to store hydraulic pressure in an accumulator. A lanyard, which runs from the accumulator to inside the towing vehicle, is used to remotely raise the launch rail to its proper firing position. A power cable is fed from the launcher to the towing vehicle which enables the operator to use the M34 Blasting Machine to launch the MK22 Rocket and detonate the LDC from inside the vehicle. The over-pressure created by the LDC will clear a path 16 meters wide and 100 meters long through a minefield consisting of single impulse, non-blast resistant, pressure-fused mines. The width of the lane and the ability to neutralize mines is dependent upon the mine type and fusing.





History: The LDC has been in the US inventory since the 1960's, with wartime use in Vietnam. The early employment, used during the Viet Nam war, was with the LVTE tractor. When the LVTP7 family of vehicles replaced the LVTP5 family of vehicles, an engineer variant of the amphibious tractor was not procured. Throughout the late 1960's and into the late 1970's, the only way to employ the LDC was with a ground-mounted system. Due to the difficulty in moving and employing the LDC in this configuration, the MK155, Trailer Mounted Mine Clearing Line Charge Launcher was developed so that the LDC could be towed behind a tracked vehicle. The trailer-mounted LDC solved the mobility problem for ground operations but did not provide an amphibious breaching capability.





General Characteristics, MK155 Mine Clearance Launcher





Manufacturer:
Several





Host Vehicle:
M353 General Purpose, 3-1/2 Ton, 2-Wheeled, Trailer Chassis





Weight (includes trailer and launch railing):
3,775 pounds (1,699 kilograms)


Fully loaded (includes 1 Linear Demolition Charge and 1 rocket): 6,405 pounds (2,883 kilograms)








Shipping Height:
74 inches (1.88 meters)





Unit Cost:
$4,660
2mk56_large.jpg

David
Tue February 11, 2003 1:00pm
Mark 56 Mine

Description: The Mk 56 mine is an explosive-loaded (HBX-3) moored mine operationally planted by B-52H Stratofortress, F/A-18A/D Hornet, and P-3C Orion aircraft.


This 2,000-pound mine consists of an anchor, mechanism section, explosive section, and flight gear. Although intended primarily as an anti-submarine weapon, it can also be used effectively against surface craft. The mine employs a magnetic firing mechanism, which uses a total-field magnetometer as its influence detector. Unlike earlier search coils which responded to changes in only one component of a ship's magnetic field, the Mine Mk 56's magnetometer responds to changes in magnitude of the total background field. The mechanism/explosive sections are painted brick red and the anchor is painted black.


The Mk 56 training mine is a recoverable, inert-loaded mine identical in size and weight to its Service mine counterpart. It is designed solely for training aviation personnel flying B-52H, F/A-18A/D, and P-3C aircraft in the techniques of carrying mines and planting minefields.


This mine consists of a non-functional anchor since it does not separate and moor the mine's mechanism section. It also has an inert-loaded explosive section, an arming device simulator, and functional flight gear. The mechanism and inert-loaded explosive sections are painted either white with orange stripes or orange with white stripes and the anchor remains black.
2762mm_large.jpg

David
Tue February 11, 2003 1:09pm
7.62mm Cartridge

Description: There are currently five 7.62mm cartridges in service.


M80 NATO 7.62mm ball cartridge: The M80 is the standard 7.62mm ball cartridge. The M80 can be identified by its unpainted (copper) tip.


M276 NATO 7.62mm ball/dim tracer cartridge: Designed to be used with night vision devices, the M276 dim tracer is a reduced visibility alternative to the standard, high visibility M62 tracer. The M276 can be identified by its purple painted tip.


M62 NATO 7.62mm ball/tracer cartridge: The M62 is the tracer variant of the M80. It is, in all respects, identical to the M80. The M62 can be identified by its orange painted tip.


M82 NATO 7.62mm blank firing cartridge: Designed for use with training simulators, the M82 has no projectile and contains a reduced powder charge. The M82 can be identified by its crimped and sealed cartridge opening in place of a projectile.


M118 7.62mm long range special ball cartridge: Designed for use in long range sniper applications where a high degree of accuracy is required, the M118 is essentially a civilian match grade bullet adapted for military use. Externally, the M118 is identical to the M80 7.62mm ball ammunition.
2cal50_large.jpg

David
Tue February 11, 2003 1:09pm
.50 Caliber Cartridge


Description: There are currently eleven .50 caliber cartridges in service.


M2/M33 .50 Caliber ball cartridge: The M2 is the original standard .50 caliber ball cartridge. The M33 is a redesigned, modern version of the M2, and is identical in all respects. The M2/M33 can be identified by its unpainted (copper) tip.


M1/M10/M17 .50 Caliber tracer cartridge: The M1/M10/M17 are tracer variants of the M2/M33 cartridge. They are essentially identical to one another in terms of ballistic performance and function. These M1 has a red painted tip, the M10 has a orange tip, and the M17 has a brown tip.


M1 .50 Caliber incendiary cartridge: The M1 incendiary cartridge is an incendiary cartridge primarily intended for use against aircraft and material. The M1 can be identified by its blue tip.


M23 .50 Caliber incendiary cartridge: The M23 incendiary cartridge is similar to the M1 incendiary cartridge and is used in the same capacity as the M1. The M23 cartridge has a blue tip with a light blue ring below it.


M2 .50 Caliber armor piercing cartridge: The M2 armor piercing cartridge was designed for use against soft skinned and lightly armored vehicles as well as for use against enemy built up defensive positions. It has no incendiary component. The M2 can be identified by its black tip.


M8 .50 Caliber armor piercing / incendiary cartridge: The M8 armor piercing / incendiary cartridge was designed for use against soft skinned and lightly armored vehicles as well as material destruction. It has an incendiary component. The M8 can be identified by its silver (aluminum) tip.


M20 .50 Caliber armor piercing / incendiary tracer cartridge: The M20 armor piercing / incendiary tracer cartridge is the tracer variant of the M8 API cartridge. The M20 can be identified by its red tip with a silver (aluminum) ring below that.


M1A1 .50 Caliber blank firing cartridge: Designed for use with training simulators, the M1A1 has no projectile and contains a reduced powder charge. The M1A1 can be identified by its crimped and sealed cartridge opening in place of a projectile.





History: Soon after American servicemen deployed to Europe for World War One, it was recognized that an automatic weapon capable of firing a cartridge larger than those currently in service was sorely needed. In addition to being more powerful than the standard rifle cartridge, this new cartridge would also need an armor penetrating capability to serve as a against the recently introduced tank. Although America was not able to produce such a weapon before the end of the war, research and experimentation with a number of captured German anti-tank firearms eventually lead to the Browning M1921A1 .50 caliber machine gun. Introduced in 1922, the Browning M1921A1 machine gun fired a massive .50 caliber cartridge and had an effective range of over 1000 meters. The M1921A1 was later modified to improve barrel life and reliability, and was redesignated the M2HB (heavy barrel) machine gun in 1933. The M2HB is still in service with the U.S. military where it is used in a number of roles, ranging from infantry heavy machine gun to vehicle, helicopter, and small boat and craft armament.


2556.jpg

David
Tue February 11, 2003 1:09pm
5.56mm Cartridge


Description: There are currently five 5.56mm cartridges in service.


M193 NATO 5.56mm ball cartridge: Introduced in 1964, the M193 was the original 5.56mm cartridge designed for use in the M-16 rifle with a 1 in 12 rifled barrel twist. No longer in production, but still in stock, it has been replaced by the heavier M855 cartridge. The M193 can be identified by its unpainted (copper) tip.


M855 NATO 5.56mm ball cartridge: Introduced as a replacement for the M193 cartridge, the M855 fires a heavier projectile with greater accuracy. While the cartridge was designed to be fired from the newer heavy barreled M-16A2 assault rifle and M-4 carbine (each of which has a 1 in 7 twist barrel) it may be fired out of older M-16 models without severe degradation of accuracy. The M855 can be identified by its green painted tip.


M856 NATO 5.56mm ball/tracer cartridge: Introduced with the M855, the M856 is the tracer variant of the M855. It is, in all respects, identical to the M855. The M856 can be identified by its orange painted tip.


M200 NATO 5.56mm blank firing cartridge: Designed for use with training simulators, the M200 has no projectile and contains a reduced powder charge. The M200 can be identified by its crimped and sealed cartridge opening in place of a projectile.


M862 5.56mm Short Range Training Ammunition: Designed for indoor use, the M862 is a restricted range alternative to the M193/M855 cartridge. With a maximum range of 250 meters and an effective range of 25 meters, the M862 serves as an excellent low cost substitute for Basic Rifle Marksmanship (BRM) training. The M862 can be identified by its blue plastic tip.





History: In the mid 1950s testing was begun on finding a lighter replacement for the Winchester .308 (NATO 7.62mm) infantry rifle cartridge used by the in the M-14 rifle. Eventually three cartridges were select for further testing; the .222 Special, .224 Springfield, .222 Winchester. All were essentially lengthened versions of the recently introduced .222 Remington. Eventually the .222 Special was adopted and re-designated as the .223 Remington. The .223 Remington was introduced, along with the Armalite AR-15 Assault rifle, for experimental use by the Army in 1957. In 1964 the cartridge was officially adopted by the U.S. Army as the M193 5.56mm ball for use in the M-16 rifle (which was, itself, based on the Armalite AR-15.


2m1a2citv.jpg

David
Fri March 21, 2003 6:30am
M1A2 MBT

The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.


During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.


Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.


A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.


The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.





The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.





The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.


Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.


The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.


Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.


System Enhancement Program upgrades are intended to:


improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.


The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.


FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.


The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.


The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.


The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.


The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.


In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.


The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.


If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.


The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
2m1a2-uploadontrk.jpg

David
Fri March 21, 2003 6:30am
M1A2 MBT

The mission of the M1A2 Abrams tank is to close with and destroy enemy forces using firepower, maneuver, and shock effect. The M1A2 is being fielded to armor battalions and cavalry squadrons of the heavy force. In lieu of new production, the Army is upgrading approximately 1,000 older M1 tanks to the M1A2 configuration. Going from the M1A1 to M1A2, the Army did several things that significantly reduced ballistic vulnerability, adding dual, redundant harnesses components, redundant data buses, distributing electrical power systems so all the power controls are not in one place.


During the Army's current M1A2 procurement program about 1,000 older, less capable M1 series tanks will be upgraded to the M1A2 configuration and fielded to the active forces. There is currently no plan to field the M1A2 to the ARNG. The Army has procured 62 new tanks in the A2 configuration and as of early 1997 completed the conversion of 368 older M1s to M1A2s. The first three years of M1A2 Abrams upgrade tank work, between 1991-1993, delivered 267 tanks. A multi-year procurement of 600 M1A2 upgrade tanks was run at Lima [Ohio] Army tank plant from 1996 to 2001.


Further M1A2 improvements, called the System Enhancement Program (SEP), are underway to enhance the tank's digital command and control capabilities and to to improve the tank's fightability and lethality. In FY 1999, the Army began upgrading M1s to the M1A2 System Enhancement Program (SEP) configuration. In 1994, the Army awarded a contract to General Dynamics Land Systems to design system enhancements to the M1A2, and awarded GDLS another contact in 1995 to supply 240 of the enhanced M1A2s, with delivery scheduled to begin in 1999. M1A2 SEP started fielding in 2000. It adds second generation forward looking infrared technology to the gunner's and commander's thermal sights. This sensor also will be added to older M1A2s starting in FY 2001.


A multi-year contract for 307 M1A2 Abrams Systems Enhancement Program (SEP) tanks was awarded in March 2001 with production into 2004. The current Army plan allows for a fleet of 588 M1A2 SEP, 586 M1A2 and 4,393 M1A1 tanks. The potential exits for a retrofit program of 129 M1A2 tanks to the SEP configuration between 2004 and 2005. Initial fielding of the M1A2 to the Army's 1st Cavalry Division, Fort Hood, Texas, was complete by August 1998. Fielding to the 3rd Armored Cavalry Regiment, Ft. Carson, Colorado ended in 2000. Fielding of the M1A2 (SEP) began in spring 2000 with the 4th Infantry Division, Fort Hood, Texas, and continues. Rolling over of the 1st Cavalry Division's M1A2 tanks to new M1A2 (SEP) tank began in 2001 and continues.


The M1A2 SEP (System Enhancement Package), is the digital battlefield centerpiece for Army XXI. It is the heavy force vehicle that will lead Armor into the next century and transition the close combat mission to the Future Combat System (FCS). The M1A2 SEP is an improved version of the M1A2. It contains numerous improvements in command and control, lethality and reliability. The M1A2 System Enhanced Program is an upgrade to the computer core that is the essence of the M1A2 tank. The SEP upgrade includes improved processors, color and high resolution flat panel displays, increased memory capacity, user friendly Soldier Machine Interface (SMI) and an open operating system that will allow for future growth. Major improvements include the integration of the Second Generation Forward Looking Infared (2nd Gen FLIR) sight, the Under Armor Auxiliary Power Unit (UAAPU) and a Thermal Management System (TMS).


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY '04 - '09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense's Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD's M1A2 Abrams System Enhancement Program, Lockheed Martin's Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman's Brilliant Anti-armor (BAT) munition, Raytheon's Stinger missile and Improved Target Acquisition System, and Textron's Wide Area Mine.





The 2nd Generation Forward Looking InfraRed sighting system (2nd Gen FLIR) will replace the existing Thermal Image System (TIS) and the Commander's Independent Thermal Viewer. The incorporation of 2nd Gen FLIR into the M1A2 tank will require replacement of all 1st Gen FLIR components. From the warfighter perspective, this is one of the key improvements on the SEP. The 2nd Gen FLIR is a fully integrated engagement-sighting system designed to provide the gunner and tank commander with significantly improved day and night target acquisition and engagement capability. This system allows 70% better acquisition, 45% quicker firing and greater accuracy. In addition, a gain of 30% greater range for target acquisition and identification will increase lethality and lessen fratricide. The Commander's Independent Thermal Viewer (CITV) provides a hunter killer capability. The 2nd GEN FLIR is a variable power sighting system ranging from 3 or 6 power (wide field of view) for target acquisition and 13, 25 or 50 power (narrow field of view) for engaging targets at appropriate range.





The UAAPU consist of a turbine engine, a generator, and a hydraulic pump. The generator is capable of producing 6 Kilowatts of electrical power at 214 Amps, 28 vdc, and the hydraulic pump is capable of delivering 10 Kilowatts of hydraulic power. The UAAPU can meet the electrical and hydraulic power to operate all electronic and hydraulic components used during mounted surveilance operations and charge the tank's main batteries. The UAAPU will reduce Operational and Support cost by utilizing the same fuel as the tank at a reduced rate of 3-5 gallons per operational hour. The UAAPU is mounted on the left rear sponson fuel cell area and weighs 510 pounds.


Another improvement in the M1A2 SEP is the Thermal Management System (TMS) which keeps the temperature within the crew compartment under 95 degrees and the touch temperature of electronic units under 125 degrees during extreme conditions. By reducing the temperature in the crew compartment for the crew and electronic units, this increases the operational capability for both soldiers and the vehicle. The TMS consists of an Air Handling Unit (AHU) and a Vapor Compression System Unit (VCSU) capable of providing 7.5 Kilowatts of cooling capacity for the crew and Line Repairable Units (LRUs). The AHU is mounted in the turret bustle and the VCSU is mounted forward of the Gunner's Primary Sight (GPS). The TMS uses enviromentally friendly R134a refrigerant and propylene glycol/water mixture to maintain the LRU touch temperature at less than 140 degrees Fahrenheit. The TMS is mounted in the left side of turret bussel and weighs 384 pounds.


The Army requires that all systems operate in the Army Common Operating Environment (ACOE) to improve combined arms operations. Digitization and information dominance across the entire Army for tactical elements is accomplished using Force XXI Battle Command for Brigade and Below (FBCB2) software. In Abrams, FBCB2 software is hosted on a separate card that enables situational awareness across the entire spectrum of tactical operation. It improves message flow, through 34 joint variable message formats, reports ranging from contact reports to logistic roll ups, as well as automatically providing vehicle location to friendly systems. The SEP allows for digital data dissemination with improved ability to optimize information based operations and maintain a relevant common picture while executing Force XXI full dimensional operation. This enhancement increases capability to control the battlefield tempo while improving lethality and survivability. Finally to ensure crew proficiency is maintained, each Armor Battalion is fielded an improved Advanced Gunnery Training System (AGTS) with state-of-the-art graphics.


Changes to the M1A2 Abrams Tank contained in the System Enhancement Program (SEP) and "M1A2 Tank FY 2000" configuration are intended to improve lethality, survivability, mobility, sustainability and provide increased situational awareness and command & control enhancements necessary to provide information superiority to the dominant maneuver force. The Abrams Tank and the Bradley Fighting Vehicle are two central components of the dominant maneuver digital force.


System Enhancement Program upgrades are intended to:


improve target detection, recognition and identification with the addition of two 2nd generation FLIRs.
incorporate an under armor auxiliary power unit to power the tank and sensor suites.
incorporate a thermal management system to provide crew and electronics cooling.
increase memory and processor speeds and provide full color map capability.
provide compatibility with the Army Command and Control Architecture to ensure the ability to share command & control and situational awareness with all components of the combined arms team.
Additional weight reduction, embedded battle command, survivability enhancement, signature management, safety improvement, and product upgrade modifications to the M1A2 will comprise the "M1A2 Tank FY 2000" configuration fielded to units of the digital division beginning in FY 2000.


The M1A2 IOT&E was conducted from September-December 1993 at Fort Hood, TX and consisted of a gunnery phase and a maneuver phase. The Director determined that the test was adequate, the M1A2 was operationally effective, but not operationally suitable and unsafe. That assessment was based on poor availability and reliability of the tank, instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns.


FOT&E #1 was conducted in September-October 1995 in conjunction with the New Equipment Training for two battalion sized units. Despite assurances from the Army that all corrective actions were applied, numerous instances of uncommanded tube and turret movement, Commander's Independent Display (CID) lockup and contact burns continued during FOT&E #1. The follow-on test was placed on hold and the Army "deadlined" the two battalions of M1A2 tanks at Fort Hood for safety reasons. The PM isolated 30 "root causes" of the safety problems and completed hardware and software upgrades in June 1996 which were assessed in FOT&E #2.


The M1A2 TEMP was approved during 2QFY98. This TEMP includes a coordinated plan for FOT&E #3 of the M1A2 in conjunction with the IOT&E of the Bradley Fighting Vehicle in FY99 at Fort Hood, TX. This combined operational test will consist of 16 force-on-force battles between a Bradley Fighting Vehicle System-A3/M1A2 SEP combined arms team and M1A1/ Bradley-ODS combined arms team. Additionally, it will serve as the operational test for the 2d Generation FLIR. This approach implements the Secretary of Defense theme of combining testing in order to save resources and ensure a more realistic operational environment.


The Army and DOT&E completed vulnerability assessment efforts and concluded that the "M1A2 Tank FY 2000" is a significant change from the original M1A2 design and will require a system-level survivability evaluation. This evaluation will rely on full-up system level testing of two systems, component and sub-system level testing, modeling and simulation, existing data, and previous testing to assess susceptibility and vulnerability of the "M1A2 Tank FY 2000" and its crew to the expected threat and to assess battle damage repair capabilities.


The M1A2 Abrams Tank with the corrective actions applied by the Program Manager during FY96 is assessed to be operationally effective and suitable. The availability, reliability, fuel consumption, and safety problems observed in previous testing have been corrected. FOT&E #2 was adequately conducted in accordance with approved test plans and the Abrams TEMP. There were no observed instances of the uncommanded tube and turret movement, inadvertent .50 caliber machine gun firing, and hot surfaces which caused contact burns in previous testing.


The largest area of technical risk to the program is the development of the Embedded Battle Command software which is intended to provide friendly and enemy situational awareness and shared command & control information throughout the combined arms team. This software is being developed as a Horizontal Technology Insertion program and will be provided to the weapon systems and C2 nodes of the combined arms team in FY00. This development schedule is high risk and could adversely impact the M1A2 schedule.


In late 2002 the Army experienced a tragic accident involving the M1A2 Abrams main battle tank. While the crew of the M1A2 was operating the vehicle, a failure within the vehicle's Nuclear, Biological, Chemical (NBC) main system occurred which resulted in an NBC filter fire. One soldier died and 9 others received injuries. While there are numerous factors involved in this accident, the primary cause of the NBC Filter fire is an air cycle machine seizure, caused by dirt ingestion.


The M1A2 tank provides various warnings and cautions to crewmembers in the case of an NBC system problem. These warnings and cautions are displayed visually at the Commander's Integrated Display (CID) and at the Driver's Integrated Display (DID); additionally, an Audio tone is transmitted to each crewman via the Vehicular Intercommunication Set (VIS). The audio warning is generated from the tank's Analog Input Module (AIM) by way of the 2W119-5 wiring harness (Y-cable) which is connected to the driver's station, full-function, control box (AN/VIC 3). This Y-cable must be connected to the driver's control box at the J3 connector with the driver's CVC plugged into the P4 end of the Y-cable. Failure to properly hookup the 2W119-5 cable will not interfere with vehicle communications, but it will result in NO NBC warning tone being heard. In addition to the accident vehicle, several other M1A2 tanks at this installation were found to have the same incorrect connection. Commanders should ensure that each M1A2 in their command is inspected to ensure that this system is correctly connected. The NBC system should not be used until the inspection is complete.


If an NBC warning message is given (visually or audio), crews should immediately press NBC MAIN pushbutton on the CID to turn off the NBC main system. Continued use of the NBC main system will result in an NBC filter fire.


The NBC system is a critical component of the M1A2; it provides crews with increased protection when operating in a combat environment. This system requires proper servicing and checks as outlined in the technical manual. Ensure that all NBC sponson bolts and hardware are properly mounted and secure at all times. Failure to do so can result in the build up of dirt and dust within the NBC sponson box with the potential of damaging the Air Cycle Machine (ACM) and other components.
2tow_06.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750
2tow_imgw_009.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750
2tow_imgw_010.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750
2tow_wpn_009.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750

2tow-dvic476.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750
2tow-family.jpg

David
Fri March 21, 2003 7:38am
BGM-71 / M-220 Tube-launc

The TOW anti-tank missile of Iran-Contra fame was introduced for service in the US Army in 1970. Current versions are capable of penetrating more than 30 inches of armor, or "any 1990s tank," at a maximum range of more than 3,000 meters. It can be fired by infantrymen using a tripod, as well from vehicles and helicopters, and can launch 3 missiles in 90 seconds. It is primarily used in antitank warfare, and is a command to line of sight, wire-guided weapon. TOW is used to engage and destroy enemy armored vehicles, primarily tanks. Secondary mission is to destroy other point targets such as non-armored vehicles, crew-served weapons and launchers. This system is designed to attack and defeat tanks and other armored vehicles. The system will operate in all weather conditions and on the "dirty" battlefield.


In May 1972, U.S. soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. During the Gulf War, in Saudi Arabia the system was represented by the HMMWV with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version. The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat it was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Early reports focused on the problems being experienced by US Army and Marine Corps units in hitting targets during live-fire exercises because soldiers [lacked experience firing the weapon, as well as Iraqi use of "dazzlers" intended to interfere with the guidance of Army TOW missiles and other antitank missiles. But the TOW during ODS was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It did not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that U.S. Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability. The Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Even without these rather unusual and certainly unexpected displays of its effectiveness, the TOW did better than expected. The system's deadly accuracy proved to be unstoppable even out to its maximum effective range and under degraded visibility conditions. TOW was real powerful hitting because you could tell as soon as it hit, the vehicle was dead. TOW missiles were able to kill targets while the Bradley was on the move.


The basic TOW Weapon System was fielded in 1970. Manufactured by Hughes Aircraft Company, the TOW is the most widely distributed anti-tank guided missile in the world with over 500,000 built and in service in the U.S. and 36 other countries. The TOW has extensive combat experience in Vietnam and the Middle East. Iran may have obtained 1,750 or more TOWs and used TOWs against Iraqi tanks in the 1980s. The TOW 2 launcher is the most recent launcher upgrade. It is compatible with all TOW missiles. The TOW 2 Weapon System is composed of a reusable launcher, a missile guidance set, and sight system. The system can be tripod mounted. However because it is heavy, it is generally employed from the HMMWV. The missile has a 20-year maintenance-free storage life. All versions of the TOW missile can be fired from the current launcher.


The TOW is a crew portable, vehicle-mounted, heavy anitarmor weapon system consisting of a launcher and one of five versions of the TOW missile. It is designed to defeat armored vehicles and other targets such as field fortifications from ranges up to 3,750 meters. After firing the missile, the gunner must keep the cross hairs of the sight centered on the target to ensure a hit. The system will operate in all weather conditions in which the gunner can see a target throughout the missile flight by using either a day or night sight.


The TOW Sight Improvement Program (TSIP) effort began in 199 However, on 15 October 1991 The Secretary of the Army cancelled the TSIP because of declining budget & funding issues. The Assistant Secretary of the Army for Research, Development and Acquisition directed the PEO, Tactical Missiles to coordinate the development of an affordable alternative. The latter effort subsequently became known as the Improved Target Acquisition System (ITAS) being developed for the Army's light forces.


The TOW Improved Target Acquisition System (ITAS) is a materiel change to the The ITAS is a material change to the current TOW2 ground launcher and M966 HMMWV TOW2 acquisition and fire control subsystems for first-to-deploy light forces. ITAS aides in firing all versions of TOW and builds the bridge to TOW F&F. The TOW tripod and launch tube remain unchanged. ITAS significantly increases target acquisition and engagement ranges, while retaining the capability to fire all configurations of the TOW missile. ITAS uses a second-generation forward-looking infrared system, digital components, and an eyesafe laser range finder. ITAS has an improved design with BIT/ BITES for increased maintainability and reduced logistics requirements. It also features an improved man-machine interface that improves system engagement performance. The ITAS modification kit consists of an integrated (Day/ Night Sight with Laser Rangefinder) Target Acquisition Subsystem (TAS), Fire Control Subsystem (FCS), Battery Power Source (BPS), and Modified Traversing Unit (TU). The ITAS will operate from the High Mobility Multi- Purpose Wheeled Vehicle (HMMWV) and the dismount tripod platform. The ITAS will be fielded at battalion level, replacing TOW 2 in light infantry units. The TOW Improved Target Acquisition System low- rate initial production (LRIP) I contract was awarded September 30, 1996, with a production quantity of twenty- five units. LRIP II was awarded March 1998 for a quantity of seventy-three systems for the 1st BDE Fielding in September 1999. First unit equipped (FUE) was conducted in September 1998.


Increased funding for Stryker and Future Combat Systems (FCS) came as a result of Army decisions in 2002 to terminate or restructure some 48 systems in the FY ?04-?09 Program Objective Memorandum (POM) long-term spending plan. Among the systems terminated were: United Defense?s Crusader self-propelled howitzer and the A3 upgrade for the Bradley Fighting vehicle, GD?s M1A2 Abrams System Enhancement Program, Lockheed Martin?s Army Tactical Missile System Block II and the associated pre-planned product improvement version of Northrop Grumman?s Brilliant Anti-armor (BAT) munition, Raytheon?s Stinger missile and Improved Target Acquisition System, and Textron?s Wide Area Mine.


The TOW system is used on the HMMWV, the M151 jeep, the armored personnel carrier, the Bradley Fighting Vehicle (BFV) COBRA helicopters, the ITV, and the US Marine Corps light armored vehicle.


Considerable improvements have been made to the missile since 1970. There are six missiles available for the TOW. Three of the five TOW missile versions--Basic TOW, Improved TOW and TOW 2--are no longer being produced for US forces. However, these versions are still used by 40 allied countries.


In May 1972, US soldiers initially used the TOW in combat during the Vietnam War. This was the very first time that American troops had ever fired an American-made missile under wartime conditions. The system has also seen action in various clashes between Israel and Syria as well as during the Iran/Iraq war. In Saudi Arabia the system was represented by [the HMMWV] with the light forces, the Bradley Fighting Vehicle with the heavy forces, Improved TOW Vehicle with some of the forces, and the Cobra-mounted version.


The TOW was one of the earliest missile systems to arrive in SWA because of the large Iraqi armored threat. It was deployed with some of the first units in Saudi: the 82nd Airborne Division, the 24th Mechanized Division and the 101st Airborne Division. Thousands of missiles and hundreds of launchers were used during Operation Desert Storm. Forces of other countries, including Saudi Arabia, also had TOW at their disposal.


Despite early reports of the problems being experienced by U.S. Army and Marine Corps units in hitting targets during live-fire exercises because soldiers lacked experience firing the weapon as well as Iraqi use of 'dazzlers' intended to interfere with the guidance of Army TOW missiles and other antitank missiles," the TOW during Operation Desert Storm was a primary killer of Iraqi tanks, armored personnel carriers,and other vehicles. Before the start of the coalition air campaign in January 1991, Army and Marine Corps planners noted a trend of improvement as more and more units [had] the opportunity to practice firing the TOW. The Iraqi use of dazzlers also proved to be of little concern to coalition commanders. The purpose of the dazzler is to confuse the missile guidance system so it loses track of the missile. It's a well known technology that does not work against the TOWs used in Southwest Asia. There were no reports since the war that any of these were effective in any way against TOWs.


Before the start of the actual ground offensive, US Marine units successfully employed the TOW against various Iraqi targets. On 18 January 1991, newspapers reported that US Marine Corps AH-1T Cobra helicopter gunships destroyed an Iraqi command post following Iraq's sporadic shelling of the Khafji area near the Saudi-Kuwaiti border. Four Cobra gunships destroyed a building used as an Iraqi command post with TOW missiles. Accounts told by Gulf War veterans who witnessed the TOW in action during the fighting revealed several instances where TOWs did things that surprised the engineers who designed them more than the soldiers who fired them. TOW missiles proved to be a determining factor in the first ground engagement of Operation Desert Storm. During the Battle of Khafji, which took place before the start of the actual ground offensive, the TOW demonstrated a pretty unique ability: the Saudis fought Iraqi tanks with TOW missiles and drove them out of the city. At one point in the battle, the Saudis saw Iraqi soldiers on top of a water tower. Not wishing to blow up the tower, the Saudis fired a TOW, blew the ladder off the tower and left the Iraqis stranded until the end of the battle." The lethality of the TOW missile was proven beyond doubt during the 100-hour ground campaign when one of the antitank munitions fired by US troops went right through the tank it was aimed at and penetrated another tank parked next to it. Another TOW went through a six foot dirt berm and knocked out an Iraqi armored personnel carrier on the otherside. In both instances, the TOW performed a feat which it supposedly was incapable of accomplishing.


Primary function: Guided missile weapon system.
Manufacturer: Hughes (missiles); Hughes and Kollsman (night sights); Electro Design Mfg. (launchers)
Size:
TOW 2A Missile:
Diameter: 5.87 inches (14.91 cm)
Length: 50.40 inches (128.02 cm)
TOW 2B Missile:
Diameter: 5.8 inches (14.9 centimeters)
Length: 48.0 inches (121.9 centimeters)
Warhead weight 12.4 kg Maximum effective range: 2.33 miles (3.75 kilometers)
Armor penetration: T-80 + / 800+ mm [>700 mm]
Time of flight to maximum effective range:
2A: 20 seconds
2B: 21 seconds
Weight:
Launcher w/TOW 2 Mods: 204.6 pounds (92.89 kilograms)
Missile Guidance Set: 52.8 pounds (23.97 kilograms)
TOW 2 Missile: 47.4 pounds (21.52 kilograms)
TOW 2A Missile: 49.9 pounds (22.65 kilograms)
TOW 2B Missile: 49.8 pounds (22.60 kilograms)
Introduction date: 1970
Unit Replacement Cost: $180,000
Launching Platforms Man portable crew of 4
HMMWV
M2/M3 Bradley Fighting Vehicle


Marine Corps Inventory: TOW launchers - 1247











Characteristics of the TOW missile family


CHARACTERISTICS
BASIC
TOW
I-TOW
TOW 2
TOW 2A
TOW 2B

Missile weight (lb)
41.5
42
47.3
49.9
49.8

Weight in container (lb)
56.3
56.5
61.8
64
64

Prelaunch length (in)
45.8
45.8
45.9
45.9
46

Standoff probe (in)
NA
14.6
17.4
17.4
NA

Max velocity (fps/mps)
981/299
970/296
1079/329
1079/ 329
1010/309

Warhead diameter (in)
5
5
6
5
5(2x)

Explosive filler (lb)
5.4
4.6
6.9
6.9
-

Max range (m)
3000
3750
3750
3750
3750


Prev Page · Next Page


Photo Sharing Gallery by PhotoPost
Copyright © 2007 All Enthusiast, Inc.

All times are GMT -7. The time now is 11:23 PM.


Powered by vBulletin, Jelsoft Enterprises Ltd.